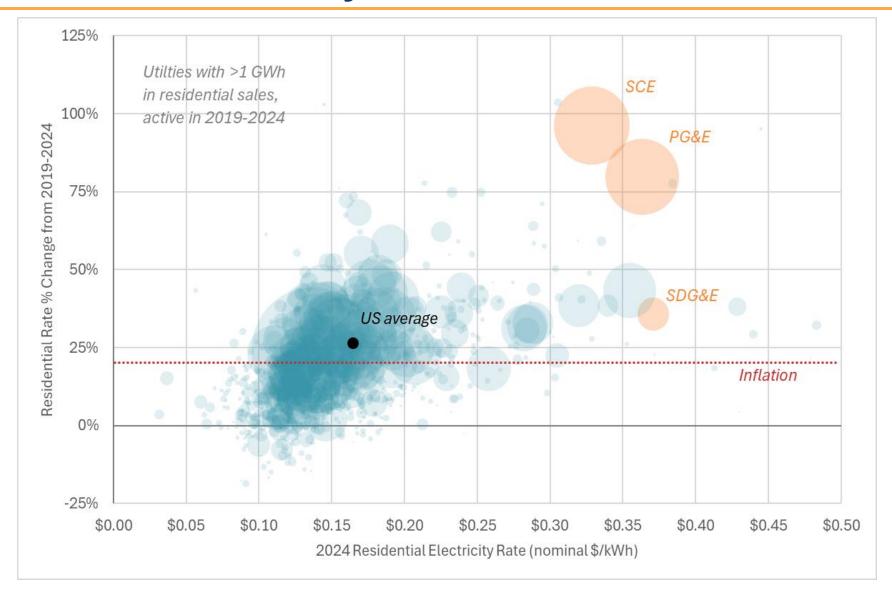


Wildfire Risk and Affordability


11/11/25

Eric Borden
Principal Associate, Synapse Energy Economics
eborden@synapse-energy.com

Synapse Energy Economics

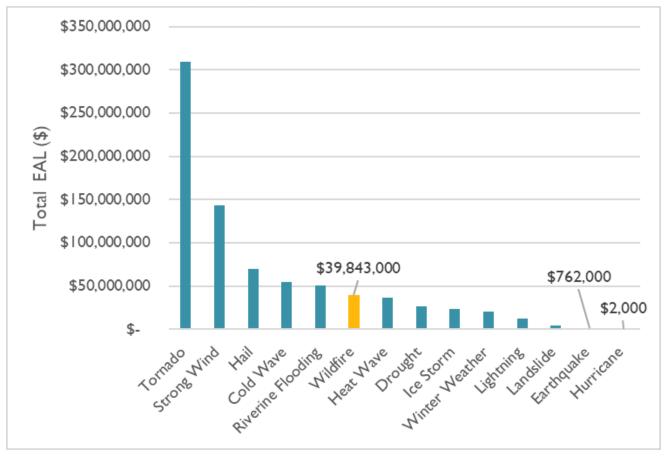
- Founded in 1996 by CEO Bruce Biewald
- Leader for public interest and government clients in providing rigorous analysis of the electric power and natural gas sectors
- Staff of 40+ includes experts in energy, economic, and environmental topics

Wildfires and Affordability in California

Overall Framework for Assessing Safety and Affordability

Three key elements:

- 1) Robust benefit-cost analysis (BCA) based on granular risk modeling. Inputs and outputs can be utilized to a) prioritize investment from highest to lowest risk areas/infrastructure, and b) assess tradeoffs, if any, between safety and affordability.
 - Important to establish a culture of improvement to continually work on these models and make them better.
- 2) Recognition that ratepayers have finite resources. The goal should be to achieve the maximum amount of risk reduction for each ratepayer dollar spent, ideally within an overall budget constraint that also considers other priorities and expenditures.
 - This can be done by evaluating risk and risk reduction context US, state, utility, and evaluation of multiple alternatives
 - The examples to follow from Minnesota and California provide illustrations of this.
- 3) Equity issues should be considered and/or incorporated into the BCA. For example, vulnerable communities may not be adequately represented in a typical BCA.

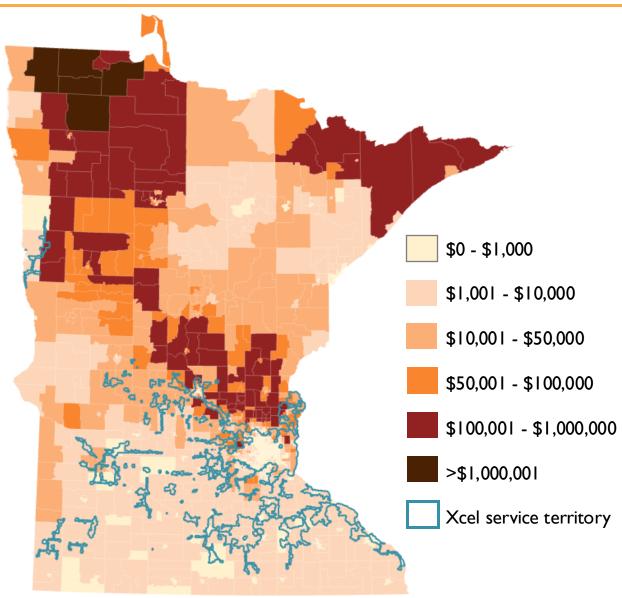

Putting Risk and Spending in Context MN and CA Examples

Wildfire risk in Minnesota compared to other risks

Wildfire is not the top risk in Minnesota.

- Ratepayers have finite resources to address a multitude of priorities.
- Risk data from FEMA indicates that wildfire is the sixth most pressing risk facing Minnesota.
- It likely that wildfire is not Xcel MN's top risk, either.

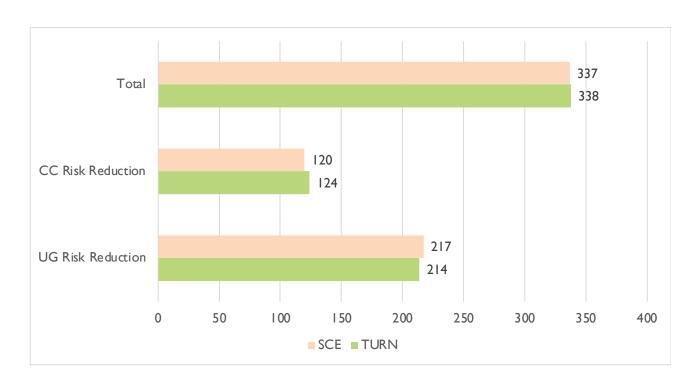
Risk by Hazard in Minnesota (2022 \$)



Source: FEMA, 2025. Data Resources. Available at <u>Data Resources | National Risk Index</u>

Wildfire Risk in Minnesota and Xcel MN Territory

State and societal risks should be addressed holistically


- Risk varies significantly across Minnesota.
- Other parts of the state contain most of the wildfire risk.

Example: Southern California Edison (SCE) Synapse/TURN Proposal

- We proposed significantly less undergrounding than SCE (177 vs. 580 miles) but more miles of covered conductor (1,651 vs. 1,250).
- By focusing on only the highest risk circuits, we dramatically reduce risk.
- The risk reduction of these proposals is equal, and would save ratepayers \$2 billion.

Risk Reduction of Grid Hardening Proposals

Mileage and Costs of Grid Hardening (\$ thousands)

	Undergrounding				
	2025	2026	2027	2028	Total / Weighted Average
TURN Miles	44	44	44	44	177
SCE Miles	60	150	200	170	580
Unit Cost	\$ 5,083	\$ 5,677	\$ 5,717	\$ 5,687	\$ 5,632
TURN Budget	\$ 224,903	\$ 251,227	\$ 252,984	\$ 251,633	\$ 980,746
SCE Budget	\$ 304,954	\$ 851,620	\$1,143,432	\$ 966,727	\$ 3,266,733
TURN-SCE	\$ (80,051)	\$ (600,392)	\$ (890,448)	\$ (715,095)	\$ (2,285,986)
		C	Covered Condu	ctor	
	2025	2026	2027	2028	Total / Weighted Average
TURN Miles	2025				Weighted
TURN Miles SCE Miles		2026	2027	2028	Weighted Average
	413	2026	2027	2028	Weighted Average 1,651
SCE Miles	413 850	2026 413 300	2027 413 50	2028 413 50	Weighted Average 1,651 1,250
SCE Miles	413 850	2026 413 300	2027 413 50	2028 413 50	Weighted Average 1,651 1,250
SCE Miles Unit Cost	413 850 \$ 763	2026 413 300 \$ 778	2027 413 50 \$ 805	2028 413 50 \$ 812	Weighted Average 1,651 1,250 \$ 770
SCE Miles Unit Cost TURN Budget	413 850 \$ 763 \$ 314,921	2026 413 300 \$ 778 \$ 320,902	2027 413 50 \$ 805 \$ 332,373	2028 413 50 \$ 812 \$ 335,247	Weighted Average 1,651 1,250 \$ 770 \$ 1,303,442