

Planning for Growth of Distributed Energy Resources: **Challenges and Opportunities**

National Association of State Utility Consumer Advocates Mid-Year Meeting

Natalie Mims Frick, Berkeley Lab Cody Davis, Electric Power Engineers

June 10, 2025

This work was funded by the U.S. Department of Energy Solar Energy Technologies Office under Contract No. DE-AC02-05CH11231.

Value of Improved Interconnection Processes

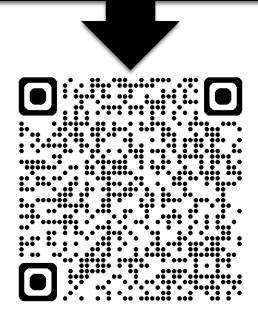
Expedites system and societal benefits of DERs

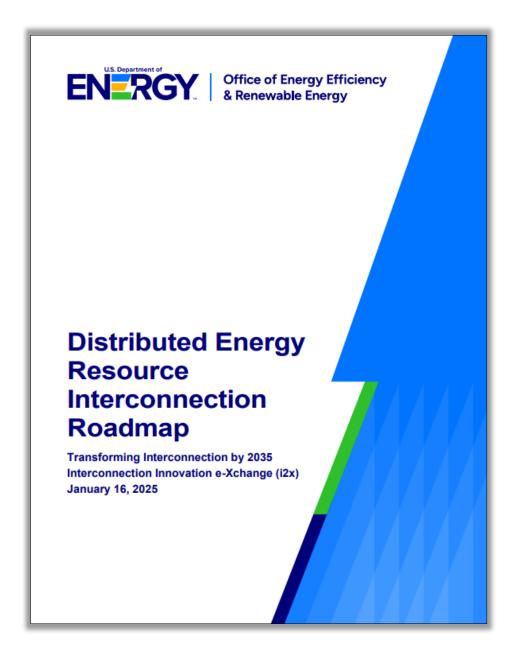
- Avoided system costs
- Delivery of grid services
- Reduced emissions and air pollutants
- Contributions to grid reliability and resilience
- Improved customer choice
- Increased market competition

Improves customer experience

- Reduced time and cost to interconnect
- Expedited bill savings and utility customer resilience
- Greater satisfaction with utility

Supports DER development


- Identification of favorable areas for interconnection
- Reduced uncertainty for interconnection costs and timelines
- Improved process efficiencies for better business outcomes
- Contributions to economic growth and workforce development



Sources: DER Interconnection Roadmap, National Efficiency Screening Project

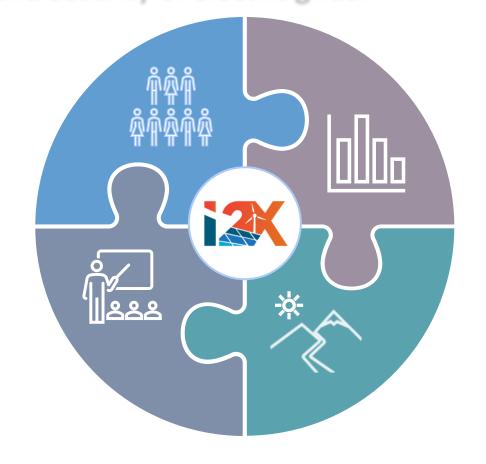
The U.S. Department of Energy Interconnection Innovation eXchange (i2x) DER Interconnection Roadmap is a guide to actions that can be taken over the next 5–10 years to implement solutions designed to address DER interconnection challenges.

> **i2X Distributed Energy Resource Interconnection Roadmap**

i2X Mission

To enable simpler, faster, and fairer interconnection of energy resources while enhancing the reliability, resiliency, and security of electric grids.

Stakeholder Engagement


Analytics & Progress Tracking

Strategic Roadmaps

Research & Technical Assistance

U.S. Department of Energy's i2X DER Interconnection Roadmap

Goal 1: Increase data **Goal 2: Improve Goal 3: Promote** Goal 4: Maintain a access, transparency, interconnection economic efficiency in reliable, resilient, and and security for interconnection process and timeline secure grid interconnection Data sharing Queue Interconnection Cost allocation quidelines models and tools management Coordination Strategic use of Inclusive and fair Interconnection between automation interconnection standards processes and grid planning Broaden use of Workforce Interconnection hosting capacity development studies analysis

Implementation of Solutions

Solutions applicable at different DER deployment levels

- *Low:* Less than 5% of distribution system peak
- *Medium:* 5% –15% of distribution system peak
- High: Greater than 15% of distribution system peak

Solutions with different implementation time frames

- Short-term: Within 1-3 years (by 2027)
- *Medium-term:* 3–5 years (by 2029)
- Long-term: Beyond 5 years (2030 and after)

Solutions outline collaborative actions among key actors

- State public utility commissions
- Other state, local and tribal governments
- Utilities
- Interconnection customers
- Consumer advocates and public interest organizations
- Equipment manufacturers, solutions and software providers
- Researchers

Measurable Success Targets for 2030

	Target	System Size*	2030 Target Value
	(1) Median time from DER interconnection request to agreement [§]	< 50 kW	Within 1 day [†]
Timing		50 kW–5 MW	< 75 days
		<u>></u> 5 MW	< 140 days
Access	(2) Completion rate from entering the guess	< 50 kW	> 99%
	(2) Completion rate from entering the queue to execution of interconnection agreement	50 kW–5 MW	> 90%
		≥ 5 MW	> 85%
Data	(3) Availability of public state-level interconnection queue data	All	50 states, Washington, D.C., and territories have public, detailed, and current queue data
Reliability	(4) No BPS disturbance events exacerbated by inaccurate DER modeling	All	0
Resilience	(5) Lower Customer Average Interruption Duration Index (CAIDI) [‡]	All	25% improvement (e.g., from 4 to 3 hours per occurrence)

^{*} System size thresholds will vary across utilities and jurisdictions.
§ For systems that do not trigger system upgrades.
† Defined as 1 business day.
‡ CAIDI with loss of load removed but major event days included.

Planning for DER Growth - Overview

Proactive vs Reactive Distribution Planning for DERs

- Traditional distribution capacity planning is reactive
 - System changes are relatively slow
 - Utility acting on high-confidence information
 - Known load additions
 - Known DER interconnections
 - Short-term load growth forecast (1–3 years)
- Traditional approach can <u>limit speed</u> of load/DER growth if system changes are faster than utility can build infrastructure
 - 2–5 year lead times for major upgrades or longer in dense urban areas
- Proactive planning considers load/DER capacity further ahead of anticipated growth to enable timely adoption
 - Drawback: Based on less certain information
 - Key consideration: Risk of incorrect action vs risk of inaction

Traditional Investment

System study triggered by large customer or short-term forecasts

System violations and solutions are identified

Proactive Investment

Long-term growth forecasting review

Potentially high growth areas identified and studied

Proactive vs Reactive Planning – Differences

Reactive Planning

Goals

- Minimize risk of unutilized investment
- DER: Allocate Cost to Cost Causer
 - DER interconnection costs paid by developer/customer
- Loads: Rate Base or Customer Contribution (or Combination)

Risks

- Construction timelines (1–2+ years)
 - Load construction timelines generally long (new buildings)

Proactive Planning

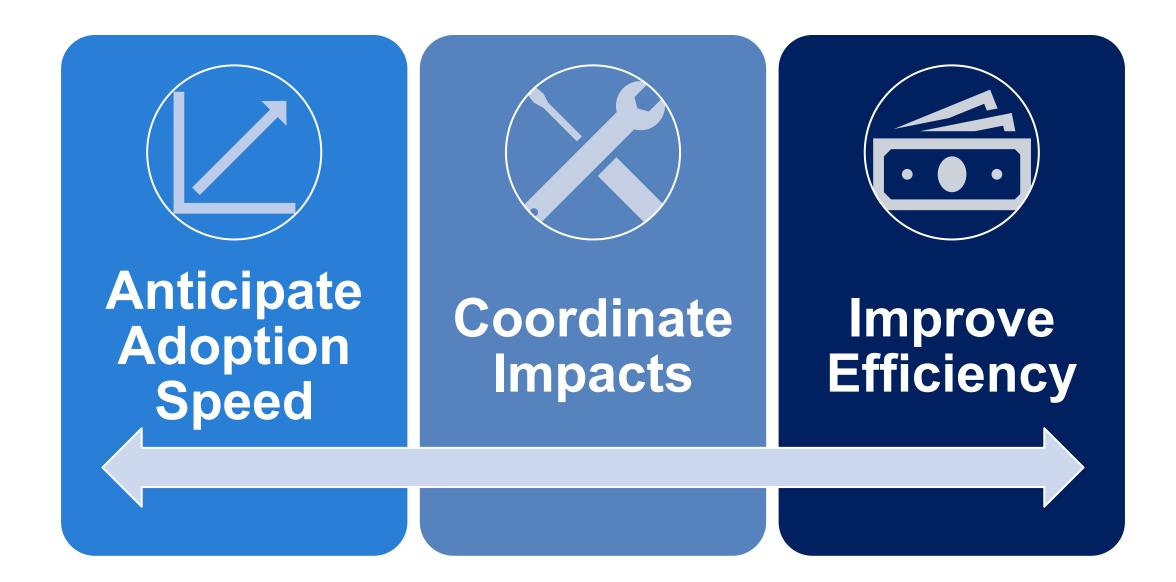
- Goals
 - Don't block load / DER growth
 - EV and PV/BESS construction timelines often much shorter
- Risks
 - Risk of under-utilized investment
 - High reliance on accuracy of long-term forecasts
 - Geospatial Where is adoption?
 - Temporal When will they interconnect?
 - Cost allocation
 - Potential complications for loads and DER under existing mechanisms

Risk Overview – Proactive vs "Just-In-Time" Investments

	Risk to stakeholders			
	Ratepayers (all customers)	Adopting customer (individual)	Utility shareholders	Society (Public policy)
	Risi	ks of investing just-in-time		
Delayed energization risk		/		
Revenue loss or delay risk	/		/	
Fossil fuel technology lock-in risk		/		/
Public policy goal risk				/
Unsuitable investment risk	~		~	
	Ris	ks of investing proactively		
Stranded asset risk	/		/	
Unsuitable investment risk	~		~	
Inappropriate cost allocation risk	~	~		

Source: Guillermo Pereira, Jeff Deason, and Anthony Sandonato, Berkeley Lab, 2025, Unlocking load growth at the grid edge: Practices for managing, recovering, and allocating distribution system investments"

Key Questions on Proactive Distribution System Investments


- What additional benefits are achieved by investing early?
- What are the downsides of waiting an additional year?
- What is the level of confidence that expected needs will materialize?
- How will the costs of proactive investments be allocated and recovered?

Potential Benefits of Proactive Investments

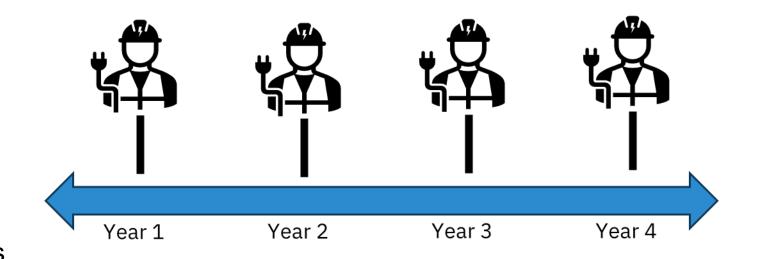
Anticipate Adoption Speed

Goals

- Prevent utility construction timelines from delaying technology adoption
- Prevent the grid from being a barrier to achieving state objectives

How to Consider

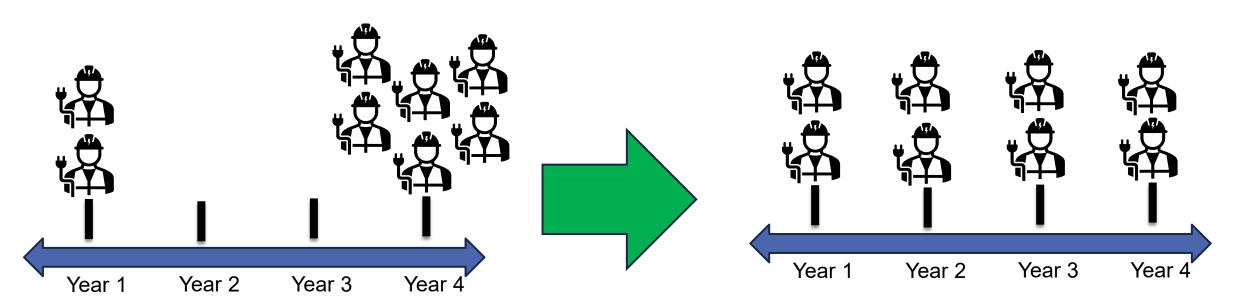
- Focus on areas with the highest risk of load or DER growth occurring faster than infrastructure can be constructed
- Examine multiple forecast scenarios or sensitivities to changes in forecasting assumptions


Coordinate Impacts

Goals

- Spread investment and construction over time to prevent:
 - Rate shock
 - Construction bottlenecks
 - Supply chain procurement bottlenecks

When to Consider

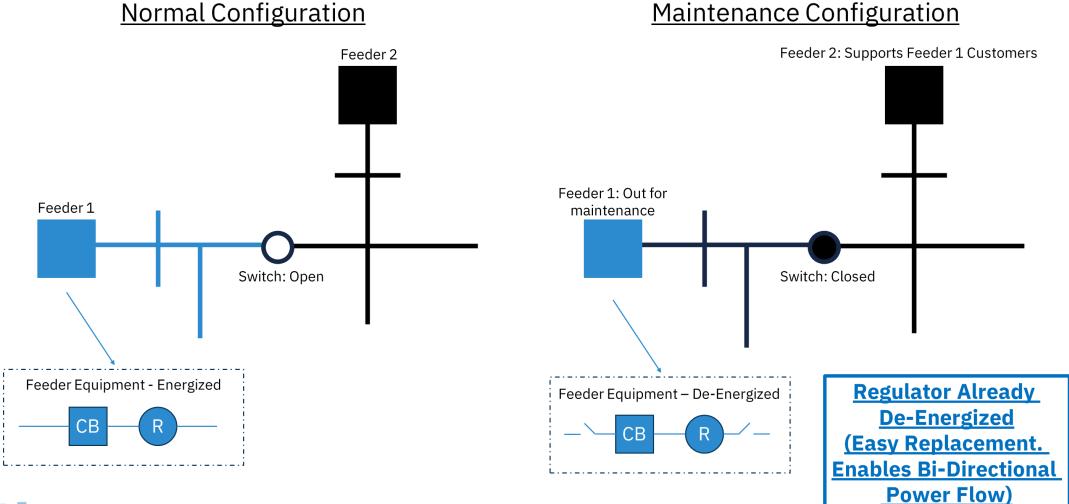

 Forecast volume of projects/costs significantly exceed historical baseline

Coordinate Impacts – Workforce and Logistics Limitations

- Workforce and materials limitations can make it impractical or costly to construct too many facilities in a given year
 - Scarcity of specialized labor
 - Scarcity of materials and equipment
 - Limited system switching capability
 - Limited availability of mobile substations

Improve Efficiency

Goals


Minimize overall spending and lifecycle costs by proactively considering future needs

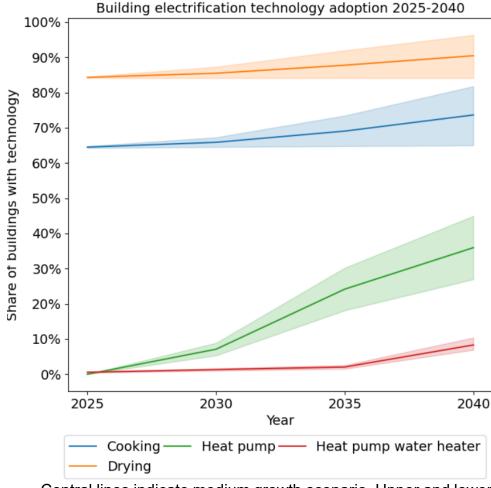
How to Consider

- Incorporate into equipment sizing decisions for other planned investments to prevent repeated work
- Coordinate proactive upgrades with other capital and maintenance work to improve efficiency

Efficiency Improvement – Coordination with Maintenance Activities

Handling Uncertainty for Proactive Investments

Understanding Uncertainty in Forecasting

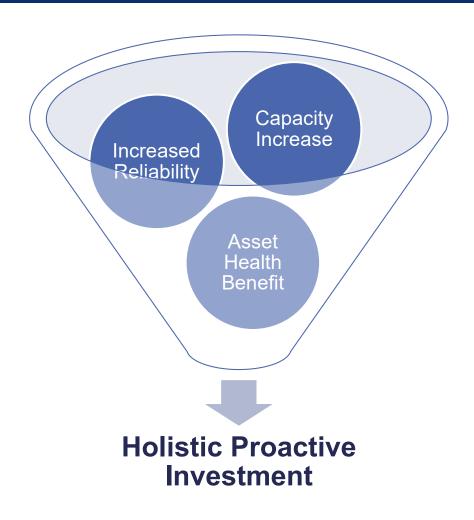

Magnitude and Timing – "How Much, How Fast"

- Speed of adoption of DER technologies significantly impacts the degree of need for proactive investments
- Scenario-based (see graph) and probabilistic approaches can be used to understand potential adoption timelines and magnitudes

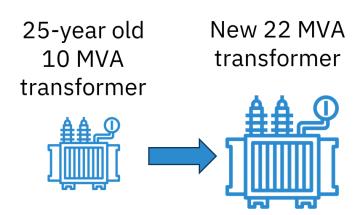
□ Allocation – "Where"

- Adoption forecasts are often created at the state or utility level and then allocated across specific substations, feeders, or individual customer or land parcels
- Granular, locational adoption forecasts are a key input to identifying and justifying proactive investments

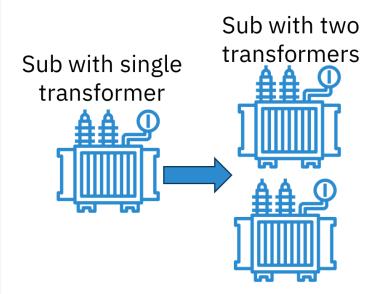
Example County-Level Technology Adoption Forecast Scenarios


Central lines indicate medium growth scenario. Upper and lower edges of color band indicate high and low growth scenarios.

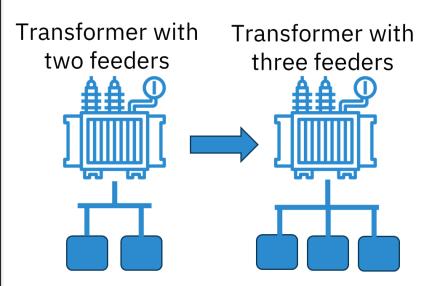
Considering Other Benefits of Proactive Distribution System Projects


Lower risk by diversifying benefit streams

- Most utility investments have multiple positive impacts
 - Capacity
 - Reliability improvement
 - Asset health improvement
- Consider all relevant benefits of proactive investment options to minimize risk of stranded assets



Example Investments with Multiple Benefit Streams


<u>Transformer Replacement</u>

- Capacity
- Asset Health
- LTC Controller Upgrade
 - If Present

Add Second Transformer

- Capacity
- Reliability
- Switching Flexibility

New Substation or Feeder

- Capacity
- Reliability
- Switching Flexibility

Cost Allocation Considerations

DER Interconnection Cost Allocation – Challenges and Mitigations

Typical practice is "cost-causer pays," where the DER project that triggers the need for distribution upgrades pays the full cost, despite other customers also using upgraded infrastructure.

Issue	Description	Possible Mitigations
Free riders	DERs that trigger upgrades pay, allowing other interconnecting resources to benefit from that equipment without paying.	 Incorporate grid usage costs into tariffs Require future beneficiaries to reimburse customer who paid for upgrade they benefit from Implement a reserve fund from all interconnection customers
Cost uncertainty	Without information on grid congestion and required upgrades, customers may face unexpected and high costs to interconnect.	 Provide up to date and granular grid data Consider proactive grid upgrades in planning processes
High costs for certain customers	Causer-pays cost allocation and serial review of applications may result in exorbitant charges to a single customer.	 Consider group interconnection studies Consider multiple benefits of resources in cost allocation (e.g., contributions to resolving preexisting grid issues)

Cost Allocation Under Proactive Planning – Challenges

Large Load Customer Interconnection

- Customers adding large loads generally pay a portion of system upgrade costs
 - Based on expected revenue that will offset the costs
 - Contribution in Aid of Construction
 - If a large load interconnects in an area impacted by a proactive upgrade, it is hard to determine and recover its contribution

DER Interconnection

- DFRs often bear all costs for hosting capacity upgrades to accommodate interconnection
 - "Cost Causer Pays"
- There are cost allocation challenges to rate-basing any hosting capacity upgrades
- If a large DER interconnects in an area impacted by a proactive upgrade, it is hard to recover its contribution

Flexible Interconnection Considerations

- Flexible interconnection attempts to maximize utilization of existing infrastructure
- Proactive capacity build-out can create **disincentives** for customers to pursue or utilize flexible interconnection

Cost Allocation Methods – Potential Solutions

Large Load Customer Interconnection

- Track large load interconnections in areas impacted by proactive investment
- Apply traditional cost allocation mechanisms to the cost of the completed upgrade
 - Contribution in Aid of Construction: Interconnection cost based on upgrade and line extension cost, expected bill contribution, and relative utilization of upgrade

DER Interconnection

- Incorporate within existing or potential DER cost-sharing frameworks
 - Determine if reasonable to socialize to prevent "closed" feeders that can't accommodate new small solar interconnections
- Track large DER interconnections in areas impacted by proactive investments
 - Recover avoided DER interconnection cost

Flexible Interconnection **Considerations**

 Customers who elect to use flexible interconnection options could be exempted from avoided interconnection cost recovery

Source: ESIG - A Proactive Approach for Accommodating High Penetrations of Distributed Generation Resources (link)

Cost Allocation Reform: State Example

- Massachusetts adopted provisional reforms to cost allocation for interconnection.
- Utilities can propose to recover interconnection costs from ratepayers and be reimbursed by interconnections over time if the costs will:
 - Be incurred in identified areas affected by high interconnection costs
 - Enable multiple interconnections
 - Be at or under a cost cap of \$500/kW per customer
 - Be recovered within established timeframes

Eversource	Initial	Pro	posal
------------	---------	-----	-------

Objectives	Status Quo	Eversource Balanced Approach Parallel Planning & Allocation
1. Enable DERs in the current queue	Yes – upgrade sized to current DER queue	Upgrades tested in DER Interconnection Planning Studies to mitigate all identified system constraints from Loadflow and Dynamic analyses
2. Mitigate DER Cost Barriers	Requires first movers to front Capital. Likely favors large developers	Where the upgrades are aligned with long-term planning needs, that portion of EDC benefits and associated cost (allowed rate recovery) are carved out – resulting in reduction to DER allocation: Mitigating 'first mover' cost barrier
3. Minimize Free-Rider Opportunities	2 nd mover partially incentivized to wait for upgrade costs funded by 1 st mover	A unique \$/kW rate established in each study area for all current and future interconnections downstream of that station ensures future DER customers pay exactly the same Interconnection cost as the current customers
4. Maintain efficient price signals	Inefficient because prices surges after short-sighted upgrade out of capacity	Pre-Upgrade: DER allocation reduced only in stations where system benefits and DER interconnections align Post-Upgrade: \$/MW rate + MWs Enabled ensures that future DERs migrate to stations with increased capacity not locations where \$/MW is high
5. Avoid wasteful expenditure	EDC would be placed in reactive mode replacing long-life assets	If upgrades are sized to be short-sighted, DER development would stall. Because upgrades would be sized to future grid needs EDC would NOT need to go back into station replacing assets that otherwise are 30-40 yr. life
6. Support MA Clean Energy Goals	Upgrade reactive to prevailing DER queue. Queue backlog with new incentives	Eversource Balanced approach ensures the tactical solutions to address near term DER queue interconnection & allows MA Clean Energy Goals
7. Ensure upgrades built in-synch with future grid reliability needs	Upgrade reactive to prevailing DER queue	Scenario Planning incorporating growth in EV, EE, Rooftop Solar in addition to DER PV and Storage conducted on an annual basis ensures infrastructure needs are identified, planned and constructed proactively
EVERS⊕URCE		

Source: Eversource Massachusetts, MA DPU

Targeting Proactive Investments – Small Customer Growth

- Upgrades to provide load and DER hosting capacity for residential and small commercial customers can be prioritized for proactive investments
 - Investments for small customer load growth are rate-based under current practices
 - Cost-sharing mechanisms for small customer DER interconnection can be considered
 - Forecasting growth for large numbers of customers is typically more reliable than forecasting the magnitude, location, and timing of large customers
 - It also is more feasible to develop feeder-specific forecasts for growth of small customer loads with sufficient accuracy to justify the proactive investment
- If <u>large</u> customers are allowed to use capacity from proactive investments, utilities can propose, and regulators can determine, large customers' cost contribution

Q&A

Contacts

Cody Davis: cdavis@epeconsulting.com

Lisa Schwartz: lcschwartz@lbl.gov

For more information

Download publications from Energy Markets & Policy: https://emp.lbl.gov/publications

Sign up for our email list: https://emp.lbl.gov/mailing-list

Follow Energy Markets & Policy on Bluesky: @BerkeleyLabEMP.bsky.social

Acknowledgements

This work was funded by the U.S. Department of Energy's Interconnection Innovation Exchange (i2X), sponsored by the Solar and Wind Energy Technologies Offices, under Contract No. DE-AC02-05CH11231.

The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, or The Regents of the University of California.

Disclaimer

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, or The Regents of the University of California.

Ernest Orlando Lawrence Berkeley National Laboratory is an equal opportunity employer.

Copyright Notice

This manuscript has been authored by an author at Lawrence Berkeley National Laboratory under Contract No. DE-AC02-05CH11231 with the U.S. Department of Energy. The U.S. Government retains, and the publisher, by accepting the article for publication, acknowledges, that the U.S. Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for U.S. Government purposes

