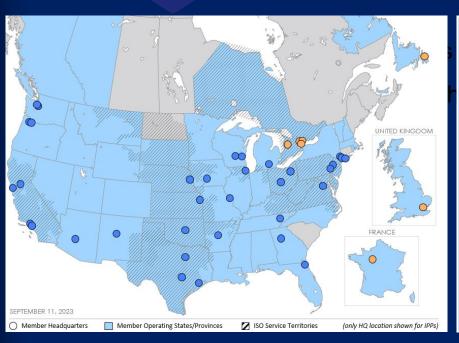


Climate READi: Power

NASUCA 2025 Mid-Year Meeting


Jeff Thomas, EPRI Principal Technical Leader READi Asset Vulnerability & Adaptation Co-Lead

June 9, 2025

CLIMATE CLIMATE PAGE AND ADAPTATION INITIATIVE

42 member companies

100+ engaged external stakeholders

EPRI Climate <u>Re</u>silience and <u>Adaptation Initiative</u> (<u>READi</u>)

- COMPREHENSIVE: Develop a Common Framework addressing the entirety of the power system, planning through operations
- CONSISTENT: Provide an informed approach to climate risk assessment and strategic resilience planning that can be replicated
- COLLABORATIVE: Drive stakeholder alignment on adaptation strategies for efficient and effective investment

- Spring 2022 Spring 2025
- All deliverables free to public

Deliverables: Common Framework Elements -> Guidance, References, & Tools

THE Climate READi: Power Framework

Guidance

Climate READi Compass: **Navigating Physical Climate Risk** Assessments for the Power System

Climate Data Users Guide

Climate Hazard and Exposure **Assessment Guidance for Power System Applications**

Asset Vulnerability and Response **Assessment Guidance**

Climate Vulnerability Assessment **Guidance for Nuclear Power Plant**

Fragility Curves for Quantifying Physical Climate Risk in the Electric Power Sector Planning for Climate Resilience in the Power System: A Guide for Model **Implementation**

Investing for Climate Resilience in the Power System: A Guide for Adaptation Prioritization and Decision-Making

Climate 101 Modules

Case Studies and Story Maps

Approaches to Future Hourly Time Series for Climate-Resilient Power System Planning

An Approach to Defining Temperature Extreme Events: A Threshold-based Probabilistic Approach to Defining Extreme **Temperature Events**

Compound Hazards and the Power Sector in a Changing Climate

Asset Vulnerability Literature Review Series

Developing a Climate Informed Modeling Framework for Power System Planning – A Synthetic Texas Case Study

Practices for Representing Climate Impacts in Bulk Electric System Models

Metrics to Evaluate Effectiveness of Resilience Strategy Deployment

References

Climate Data Gaps Assessment

Tools

Disclosing Physical Climate Risk: Inventory of Climate READi **Resources to Support Reporting** and Disclosure Activities

Climate Data Inventory

Wildfire Tool Inventory and Evaluation

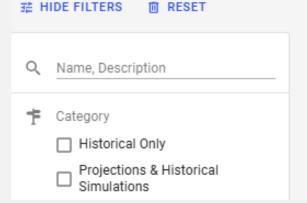
Climate-Related Vulnerabilities and Adaptations for Electric Power **System Assets**

Climate Risk Screening (RiSc) Tool

Climate READi Compass:

Navigating Physical Climate Risk Assessments for the Electric Power Sector

Compass provides practitioners with a single resource for navigating the Climate READi Framework and identifying the elements of the Framework best suited to their current implementation needs.


Access Compass here!

Climate data are foundational inputs for physical climate risk assessment

- 1 Discover changes in relevant climate hazards
- 2 Identify suitable climate data. Justify data choices.
- 3 Generate climate data for other Framework activities

Found 67 of 67 datasets

	Name	Spatial Resolution	Finest Temporal Resolution
V	Weather Stations: Including Automated Surface Weather Observing Systems (ASOS & AWOS), Global Historical Climatological Network (GHCN), Climate Reference Network (CRN), Thredded Extremes (ThredEx), etc.	Points	Sub-Hourly
V	State mesonets	Points	Hourly

Access the Climate Data Inventory

Introduction and Module 1 - Climate Data Overview

Module 2 - Climate Models, Emissions Scenarios, and Projection Data

View the event or Download Video

Module 3 - Trends and Understanding of Extreme Events

View the event or Download Video

Access the Climate 101
Tutorials

Climate-Related Vulnerabilities and Adaptations for Electric Power System Assets

Vulnerabilities & Adaptations

Searchable database that includes details on vulnerability functions and adaptation strategies

INVENTORY

Fragility Curves

Quantified relationships between climate hazards and impacts on power system assets

INVENTORY

REPORT 🖸

Standards

Weather-related standards that are relevant to power system assets for integrating climate data into decision-making processes

INVENTORY

REPORT 🖾

Asset Risk Template

Tailored spreadsheets for collecting information to conduct a thorough asset vulnerability or risk assessment (Microsoft Excel file, 128 KB)

TEMPLATE (XLSX)

Assessment Guidance

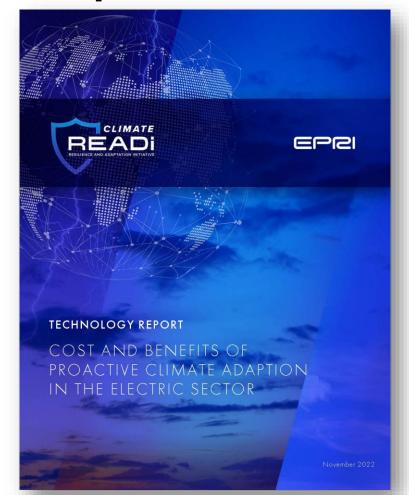
Introduces and outlines a process for conducting a climate vulnerability and adaptation assessment for electric power system assets

GENERAL REPORT

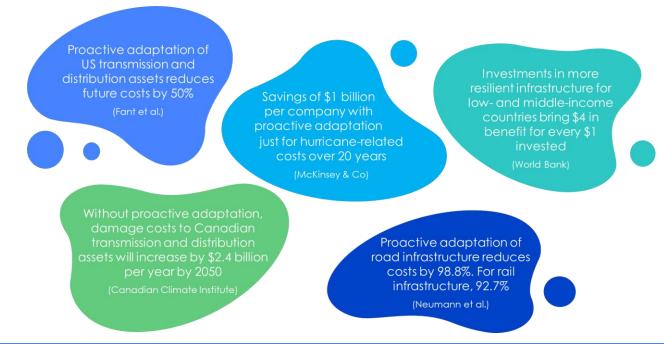
NUCLEAR REPORT 🖸

Asset-Specific Resources

Current state of knowledge and case studies regarding potential physical climate risks across the electric power industry


CASE STUDIES

LITERATURE REVIEWS

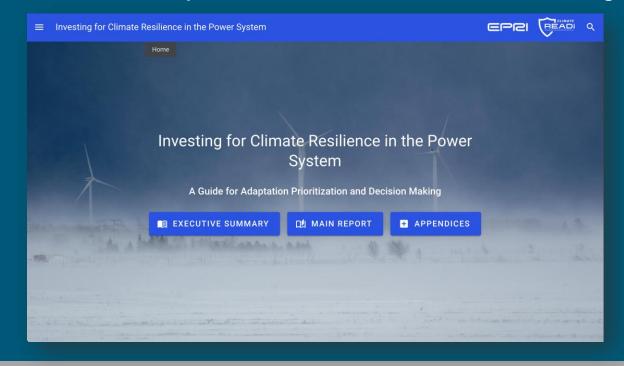

https://apps.epri.com/climate-vulnerabilities-adaptations/en/

Cost and Benefits of Proactive Climate Adaptation in the Electric Sector

- Outlines and quantifies the benefits of proactively implementing climate adaptation strategies
- Explores costs of recent disasters and recovery, and comparisons to proactive hardening costs

Proactive adaptation is consistently less expensive than respond & repair

Two Primary Guidance Documents: Modeling and Investment


Planning for Climate Resilience in the Power System:

A Guide for Model Implementation

Investing for Climate Resilience in the Power System:

A Guide for Adaptation Prioritization and Decision-Making

Investment Guidance available <u>here</u> Modeling Guidance available <u>here</u>

Additionally, 12 deliverables developed in support of the guidance documents. Available now or later this year here

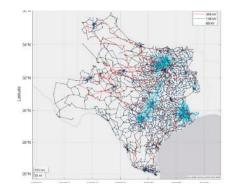
Story Maps and Case Studies

Interactive deliverables illustrating physical climate risks to the power system, with new releases planned through 2025

Access all story maps here.

Evaluating Local Climate Change Impacts

Outlines a six-stage process to help utilities assess climate risks using region-specific data and steps like collaboration, hazard scoping, and results analysis.


Projected future hurricane-related power outages

Developed by EPRI and PNNL, this story map combines synthetic storm tracks and outage predictions to show how hurricane-related outages may change across Gulf and Atlantic coast counties under future climate conditions.

Climate-Driven Variability in Wind and Solar Co-Generation

This story map analyzes decades of wind and solar data at 1,723 U.S. sites to reveal seasonal and interannual variability, resource complementarity, and implications for net-load and storage needs.

Climate-Informed Power System Modeling: Texas Case Study

This story map presents key results from testing a climate-informed power system modeling framework using a synthetic Texas grid to support resilience planning.

Coming soon – Hydropower, Nuclear, Distribution System, and More

