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Machine learning models to identify customers who are
likely eligible for assistance and energy management programs

" A .

Ground -truth Third -party data Ask customers Census-tract data ~ Machine learning
Not directly Easy to obtain, Collect directly, Total coverage, Goal: total coverage
observable moderately accurate, very accurate, but averages obscure  with better accuracy

misses many customers misses many customers many eligible than census-tract

customers averages
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Affordability metrics make deep learning actionable,

vZ v ]JvP u8]o]lSC[e Jo]lSC 8} ] vS](C
income customers

1. Household -level energy burden O0What 5
.ot %~,f {V },S z},y(" vVffSve ~fXx,,2Z
goes towards energy costs?

2. Census tract Ability to Pay Index  OWhat is 5
%0}z veziv|z },S7z2},°y(" viv~evwez WSY|z %
after housing costs?

3. Census tract poverty ratio  Owhat
proportion of households are living at or
below the poverty level

4. Energy vulnerability score - weighted,
composite score between 1 and 100 for every
customer




