DEPRECIATION FUNDAMENTALS

DAVID J. GARRETT

5/19/2022

May 19, 2022

1

OUTLINE

* INTRODUCTION

- * ACCOUNTING AND COMPUTATIONS
- ***** DEPRECIATION SYSTEMS
- ✤ MORTALITY CONCEPTS
- ACTUARIAL ANALYSIS
- SIMULATED PLANT RECORD MODEL
- ✤ Removal Cost and Salvage
- ***** RATEMAKING ISSUES

- Industrial Revolution
- Early Supreme Court Decisions
- O Definitions
- Forces of Retirement
- Ourrent Concepts

Industrial Revolution

- Capital now being "consumed"
- Viewed depreciation as a "recovery pool"
- PUCs instrumental in establishing early uniform concepts in depreciation

• Early Supreme Court Decisions

- 1876 Not customary to consider depreciation as a business expense
- 1907 Large capital additions should not be expensed in one year (matching principal)
- 1909 *Knoxville* utility is entitled to recover depreciation expense
- 1934 Lindheimer recognized straight-line method and original cost basis
- 1944 *Hope* reaffirmed Lindheimer's cost basis recognition

O Definitions

- Lindheimer (1934)
 - "Broadly speaking, depreciation is the loss; not restored by current maintenance, which is due to all the factors causing the ultimate retirement of the property. These factors embrace wear and tear, decay, inadequacy and obsolescence."

O Definitions

- Interstate Commerce Commission (1931)
 - "Depreciation is the loss in service <u>value</u> not restored by current maintenance and incurred in connection with the consumption or prospective retirement of property in the course of service from causes against which the carrier is not protected by insurance, which are known to be in current operation, and whose effect can be forecast with a reasonable approach to accuracy"

O Definitions

- AICPA (1944)
 - "Depreciation accounting is a system of accounting which aims to distribute cost or other basic value of tangible capital assets, less salvage, over the estimated useful life of the [property] in a systematic and rational manner. It is a process of allocation, not of valuation."

• Forces of Retirement ("Mortality")

Physical Forces

- Wear & decay
- Action of the elements
- Accidents

Functional Forces

- Inadequacy
- Obsolescence
- Changes in technology
- Changes in demand
- Regulatory requirements
- Managerial discretion

Contingent Forces

- Casualties
- Disasters
- Remote obsolescence

Ourrent Concepts

- Value vs. Cost Allocation
 - The Value Concept
 - In 1930, Supreme Court in West found that depreciation expense should be based on present value rather than original cost
 - Not consistent value can deteriorate slowly over time or immediately (e.g., new car of the lot)
 - Would require extensive, annual appraisals, while depreciation expense is recorded monthly for earnings reports
 - *West* ultimately overruled by *Lindheimer* and *Hope* annual depreciation should be based on original cost

Ourrent Concepts

- Value vs. Cost Allocation
 - The Cost Allocation Concept
 - Since *Lindheimer* and *Hope*, the original cost of plant is allocated over its useful life systematically
 - Promotes three fundamental accounting principles:
 - Verifiability
 - Neutrality
 - Matching
 - Book depreciation is often called "capital recovery"
 - Return "on" investment (ROE)
 - Return "of" investment (depreciation)

OUTLINE

✤ INTRODUCTION

- ***** ACCOUNTING AND COMPUTATIONS
- ***** DEPRECIATION SYSTEMS
- ✤ MORTALITY CONCEPTS
- ACTUARIAL ANALYSIS
- SIMULATED PLANT RECORD MODEL
- ✤ Removal Cost and Salvage
- ***** RATEMAKING ISSUES

- Principles
- Omputations
- Accounting Example

O Principles

- Depreciation accounting charges depreciable cost (original cost less net salvage) over the assets' useful life
- Depreciation is viewed as an operating expense, though no cash is expended

• Principles

Summarized Debit and Credit Rules

<u>Account Type</u>	<u>To Increase</u>	<u>To Decrease</u>
Asset	Debit	Credit
Liability	Credit	Debit
Equity	Credit	Debit
Revenue	Credit	Debit
Expense	Debit	Credit

• Basic Formulas

Annual Accrual (\$) =
$$\frac{Depreciable Base}{Service Life}$$

- Depreciable Base = Original Cost Net Salvage
- Net Salvage = Gross Salvage Removal Cost
- Thus, AA = [Cost (GS RC)] / Useful Life
- Assets = Liabilities + Owners' Equity
- Net Income = Revenues Expenses

• Example

- Plant costing \$100,000 is placed in service
- Estimated life is 10 years
- Plant is retired at the end of 10 years
- Estimated gross salvage is \$15,000
- Estimated cost of removal is \$5,000
- Depreciation recorded on straight-line basis

• Example

• Calculate annual accrual expense

 $Annual Accrual = \frac{Cost - (Gross Salvage - Removal Cost)}{Service Life}$

 $\$9,000 = \frac{\$100,000 - (\$15,000 - \$5,000)}{10 \ years}$

• Basic Accounting Example

Plant acquired and placed in service:
 Plant in Service 100,000
 Cash 100,000

Annual depreciation expense accrual (x10):
 Depreciation expense
 9,000
 Accumulated depreciation
 9,000

• Basic Accounting Example

 Retirement of plant:
 Accumulated depreciation Plant

100,000 100,000

• Removal cost:

Accumulated depreciation 5,000 Cash

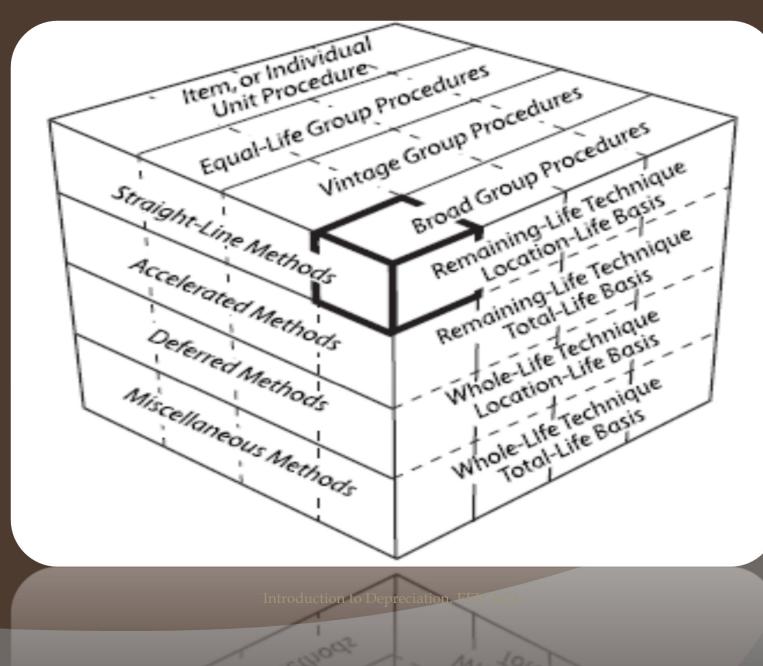
5,000

• Basic Accounting Example

Sale of plant (gross salvage):
 Cash 15,000
 Accumulated depreciation 15,000

	Assets	=	Liability	+	Equity	Revenue - Expenses =	Net Income
Plant Acquired				-			
Plant	- 100,000						
Cash	(100,000)						
Dep. Exp. (x10)							
Dep. Exp.	-					90,000	
Accum. Dep.	(90,000)						
Retirement							
Accum. Dep.	100,000						
Plant	(100,000)						
Removal Cost							
Accum. Dep.	5,000						
Cash	(5,000)						
Sale							
Cash	- 15,000						
Accum. Dep.	(15,000)						
						•	
Accum. Dep.	(15,000)						
Cash	15,000						
2916							

OUTLINE


* INTRODUCTION

- * ACCOUNTING AND COMPUTATIONS
- DEPRECIATION SYSTEMS
- ✤ MORTALITY CONCEPTS
- ACTUARIAL ANALYSIS
- SIMULATED PLANT RECORD MODEL
- ✤ Removal Cost and Salvage
- ***** RATEMAKING ISSUES

- Introduction
- O Allocation Methods
- Grouping Procedures
- Output Application Techniques
- Analysis Models

Introduction

- Dynamic system with inputs and parameters
- Objective: timely recovery of capital
- Fragmented field = nonstandard vocabulary
- Four system parameters:
 - Allocation Methods
 - Grouping Procedures
 - Application Techniques
 - Analysis Models

O Allocation Methods

- Review depreciation accounting definition:
 - "Depreciation accounting . . . aims to distribute cost . . . over the estimated useful life of the [property] in a systematic and rational manner." (AICPA)
- Allocation may be based on:
 - Time (age-life methods)
 - Units of Production

- O Allocation Methods
 - Age-Life Methods
 - Straight-line Method
 - Rate is constant over each period
 - Formula:
 - Annual Accrual = <u>Depreciable Cost</u>

Service Life

- Most common method used in this context
- Accelerated Methods
 - Double declining balance
 - Sum of the years digits

- Grouping Procedures
 - Analyzing groups is more efficient than individual units
 - Groups should contain homogenous units
 - An individual unit has a single life, whereas a group has a dispersion of lives
 - Types of grouping procedures
 - Average life
 - Equal life

Grouping Procedures

- Average Life
 - Constant annual rate based on average life of the group is applied to surviving property
 - Treats each unit as though its life is equal to the average life of the group
 - Assets with lives longer/shorter than the average will over/under depreciate

Grouping Procedures

- Average Life Example
 - Property group with two units:
 - Unit 1: \$4,000 cost with 4-year life
 - Unit 2: \$6,000 cost with 8-year life
 - Average life = $[(4,000 \times 4) + (6,000 \times 8)] = 6.4$ 10,000
 - Average life accrual rate = 1 / 6.4 = 15.63%

Grouping Procedures

SL-AL System						
				Annual	Accum.	
Year	Balance	Retired	Rate	Accrual	Deprec.	
2006	10000		15.63%	1563	0	
2007	10000		15.63%	1563	1563	
2008	10000		15.63%	1563	3125	
2009	10000	4000	15.63%	1563	4688	
2010	6000		15.63%	938	2250	
2011	6000		15.63%	938	3188	
2012	6000		15.63%	938	4125	
2013	6000	6000	15.63%	938	5063	
2014	0				0	

2014

Grouping Procedures

- Equal Life
 - Property is divided into subgroups that each have a common life
 - Treats each unit in the group as though its life was known
 - May result in higher annual accrual rates for growing plant
 - Also known as "unit summation."

Grouping Procedures

- Equal Life Example
 - Consider the same scenario except with straight-line – equal life group rates
 - Divide the property in subgroups with common lives

• Grouping Procedures

SL-ELG Accrual Rate Calculation

				Annual Accrual			
	Group	Group	Group				
Group	Amount	Life	Rate	2006-09	2010-14		
Α	4000	4	25.00%	1000			
B	6000	8	12.50%	750	750		
	Annua	al accruals		1750	750		
I	Balance durir	ng interval		10000	6000		
	Annual accr	ual rate %		17.50%	12.50%		

Annual accrual rate 70

T/.50% 12.5

• Grouping Procedures

SL-ELG System							
				Annual	Accum.		
Year	Balance	Retired	Rate	Accrual	Deprec.		
2006	10000		17.50%	1750	0		
2007	10000		17.50%	1750	1750		
2008	10000		17.50%	1750	3500		
2009	10000	4000	17.50%	1750	5250		
2010	6000		12.50%	750	3000		
2011	6000		12.50%	750	3750		
2012	6000		12.50%	750	4500		
2013	6000	6000	12.50%	750	5250		
2014	0				0		

2014

Contrasting AL and ELG Procedures

SL-AL System									
				Annual	Accum.				
Year	Balance	Retired	Rate	Accrual	Deprec.				
2006	10000		15.63%	1563	0				
2007	10000		15.63%	1563	1563				
2008	10000		15.63%	1563	3125				
2009	10000	4000	15.63%	1563	4688				
2010	6000		15.63%	938	2250				
2011	6000		15.63%	938	3188				
2012	6000		15.63%	938	4125				
2013	6000	6000	15.63%	938	5063				
2014	0				0				

SL-ELG System										
					Annual	Accum.				
	Year	Balance	Retired	Rate	Accrual	Deprec.				
_	2006	10000		17.50%	1750	0				
	2007	10000		17.50%	1750	1750				
	2008	10000		17.50%	1750	3500				
	2009	10000	4000	17.50%	1750	5250				
	2010	6000		12.50%	750	3000				
	2011	6000		12.50%	750	3750				
	2012	6000		12.50%	750	4500				
	2013	6000	6000	12.50%	750	5250				
	2014	0				0				

O Application Techniques

- Application techniques refer to the way the depreciation rate is to be applied to a utility's plant categories
- There are two commonly used techniques:
 - Whole Life
 - Allocates cost over total life of plant
 - Remaining Life
 - Allocates cost less accumulated depreciation over the remaining life of plant

O Application Techniques

- Estimates must be periodically revised
- Calculated Accumulated Depreciation:
 - "CAD" is the calculated balance that would be in the AD account at a point in time using current depreciation parameters
- Large imbalances between AD and CAD may require adjustment to AD

Application Techniques

- Whole Life
 - \circ WL Accrual = <u>Cost Avg. Net Salvage</u>

Average Service Life

- Reserve Imbalance
 - The difference between the CAD and the accumulated depreciation account
 - Imbalance may be amortized over a set period of time (e.g. 10 years)
 - Or may be amortized over the remaining life of the property (the remaining life technique does this automatically)

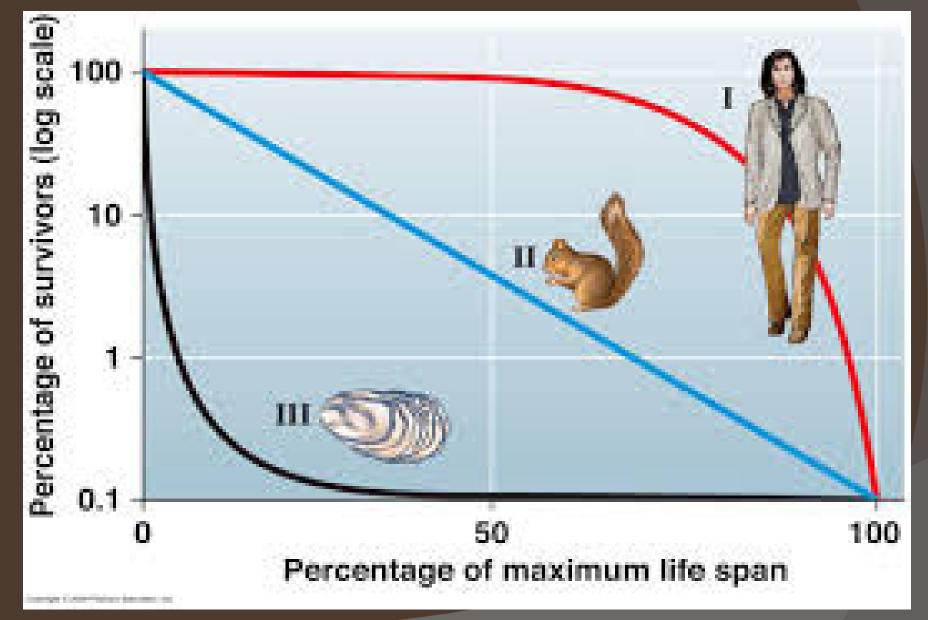
Application Techniques
 Remaining life accrual formula:

 Annual Accrual (AA) =
 <u>Plant - AD - Future Net Salvage</u>
 Average Remaining Life

Analysis Models

- Two ways of viewing life characteristics of vintage property groups:
 - Broad group
 - All units within an account are viewed as one group
 - E.g. Acct. 355 (poles) all analyzed together
 - Vintage group
 - Each vintage (placement year) within an account is considered to be a separate group
 - E.g. Poles placed in 2005, 2006, etc. are analyzed separately

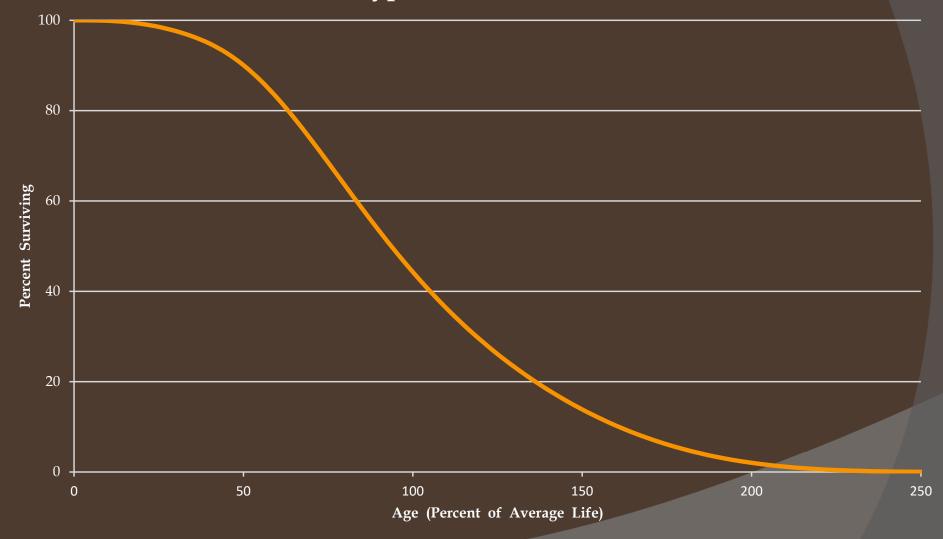
OUTLINE

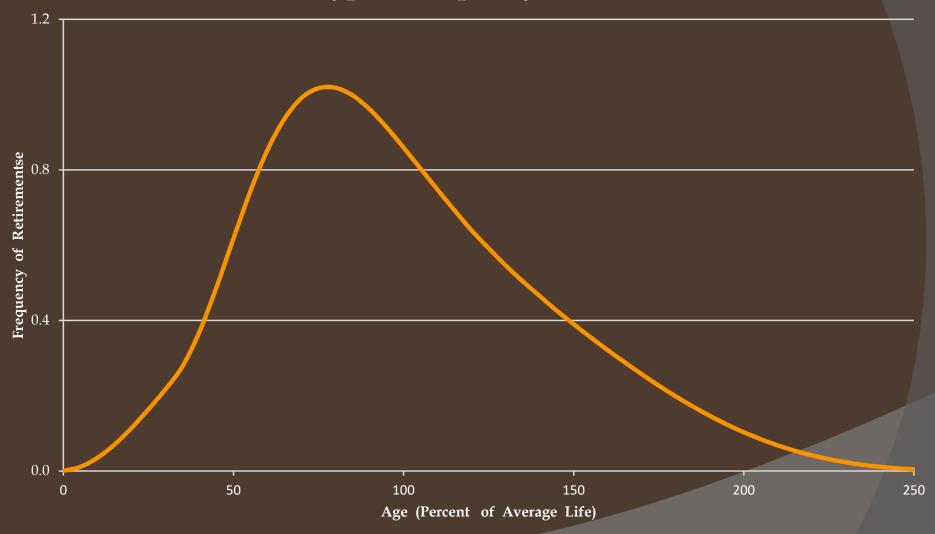

✤ INTRODUCTION

- * ACCOUNTING AND COMPUTATIONS
- ✤ DEPRECIATION SYSTEMS
- MORTALITY CONCEPTS
- ✤ ACTUARIAL ANALYSIS
- SIMULATED PLANT RECORD MODEL
- ✤ Removal Cost and Salvage
- ***** RATEMAKING ISSUES

- Introduction
- Iowa Curves
- Types of Lives

Introduction


- Analysis of industrial property rooted in the study of lives of human populations
- Actuarial analysis is used by insurance companies to predict life expectancy
- When dealing with groups, a single number is inadequate to describe life characteristics


Introduction

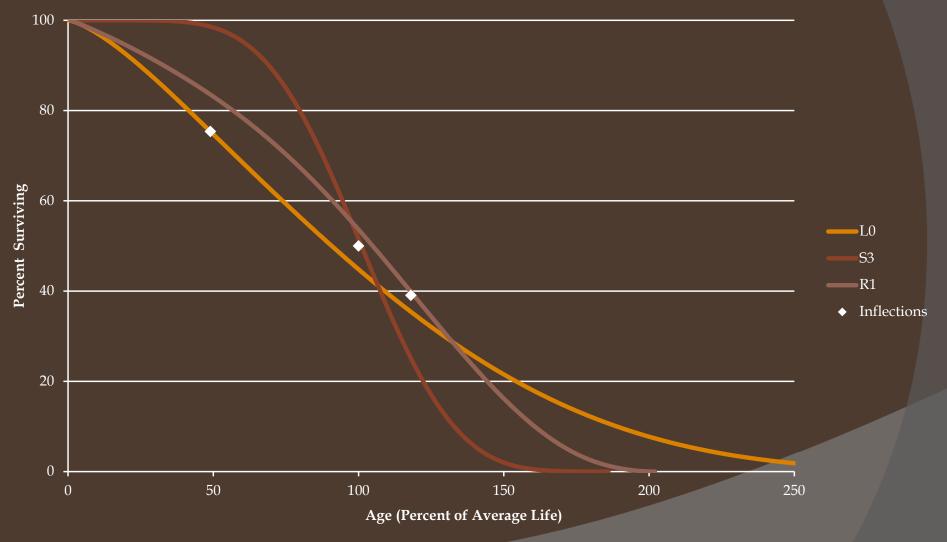
- Survivor curve graph of the percent of dollars surviving as a function of age
- Frequency curve a graph of the frequency of retirements as a function of age
- These are used to describe the life characteristics of industrial property

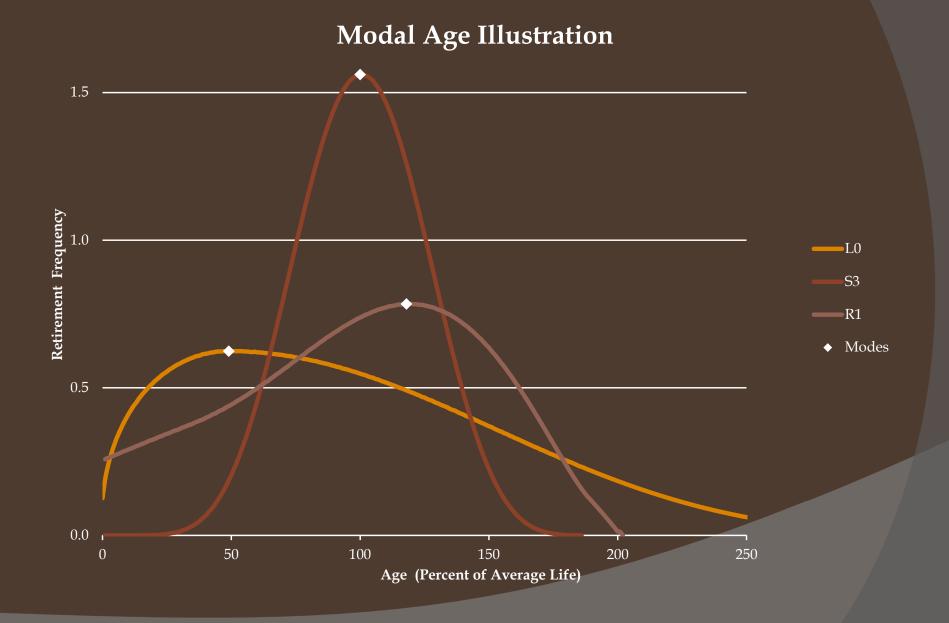
Typical Iowa Curve

Typical Frequency Curve

Iowa Curves

- Developed over several decades starting in the early 1900s.
- 1931 Kurtz and Winfrey published 13 curve types
- 1935 Winfrey expanded to 18 curves
- 1980 Russo confirmed continued validity of Iowa curves
- Today, total there are 31 "Iowa curves"

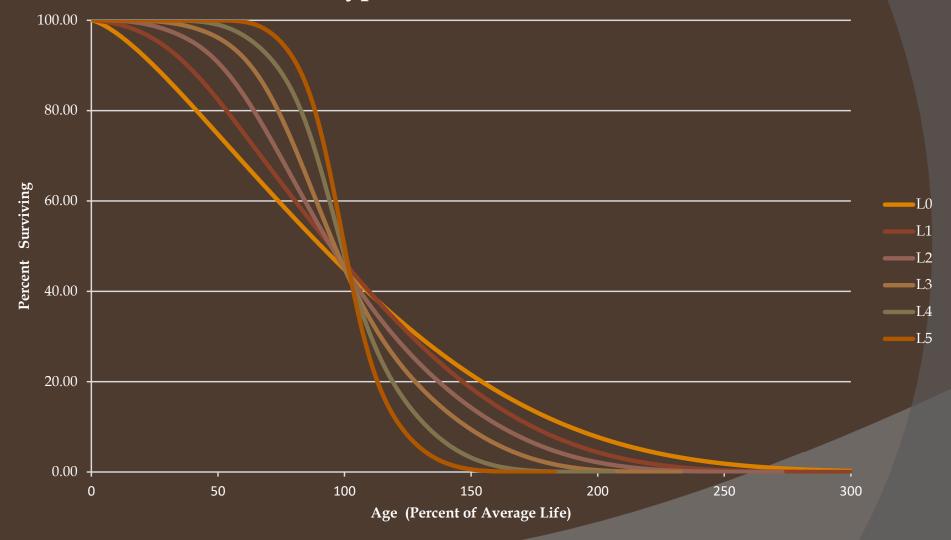

See Bulletin 125 for Iowa curve formulas. Iowa curve tables also published in Depreciation Systems


- Iowa Curves
 - Three classification variables:
 - Modal location
 - Average life
 - Variation of life

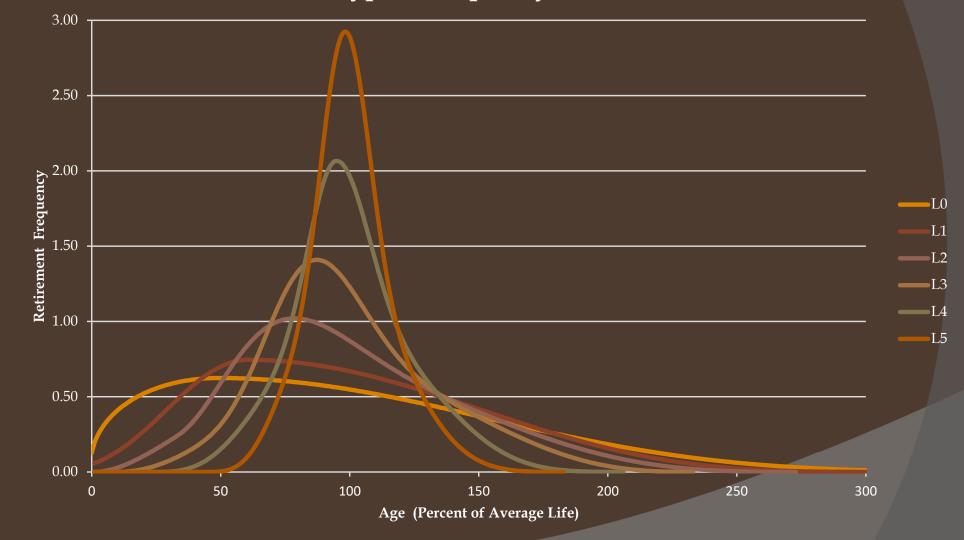
Iowa Curves

- Modal location
 - Age of greatest rate of retirement
 - Highest point on frequency curve and steepest point on survivor curve
 - Modal families:
 - 6 left modal curves (L0, L1, L2, L3, L4, L5)
 - 5 right modal curves (R1, R2, R3, R4, R5)
 - 7 symmetrical curves (S0, S1, S2, S3, S4, S5, S6)

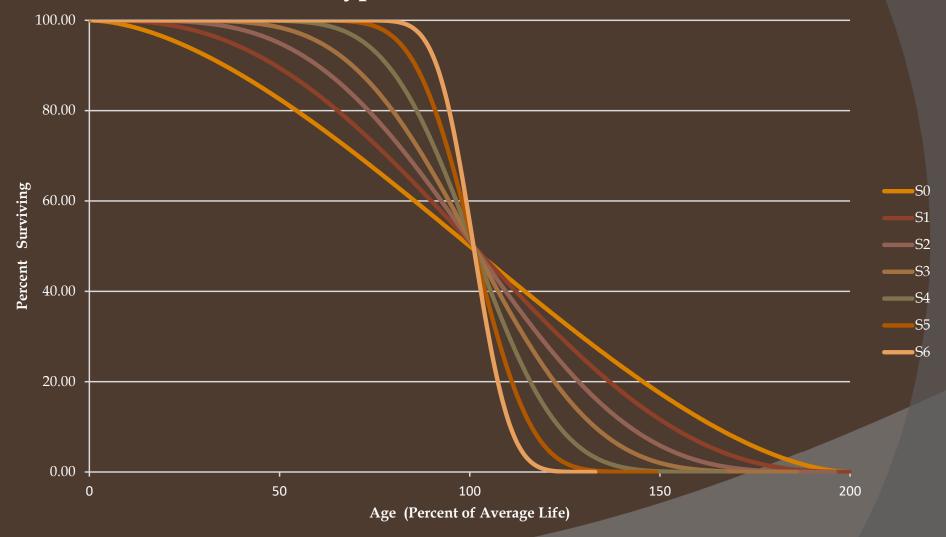
Inflection Point Illustration

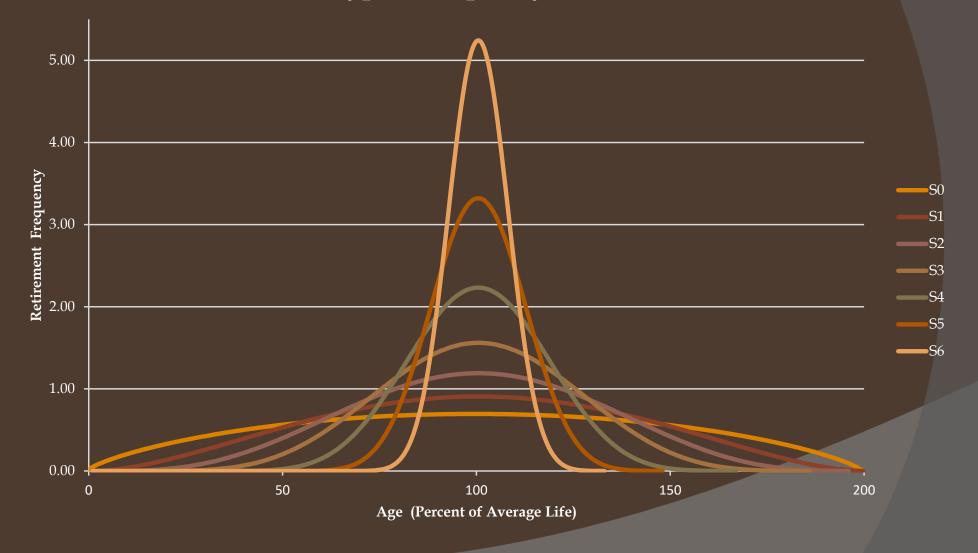


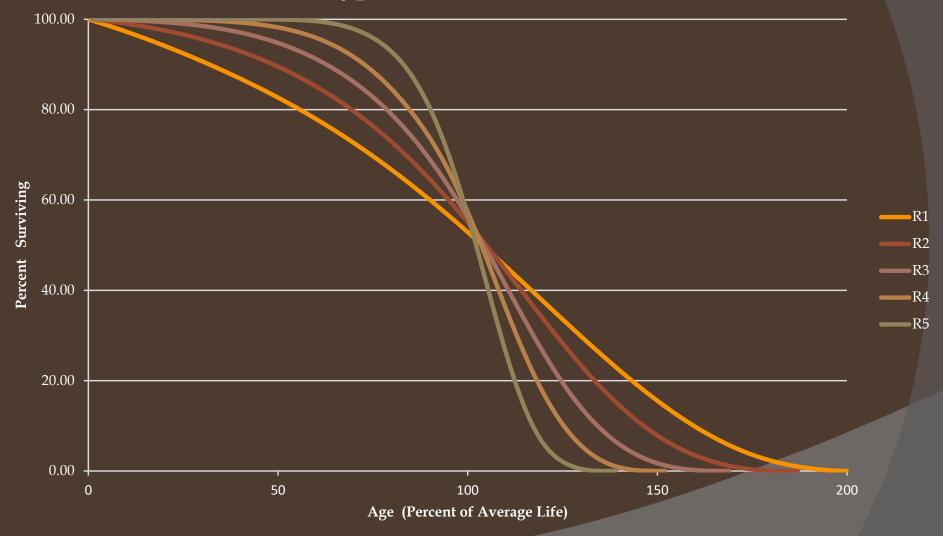
Iowa Curves

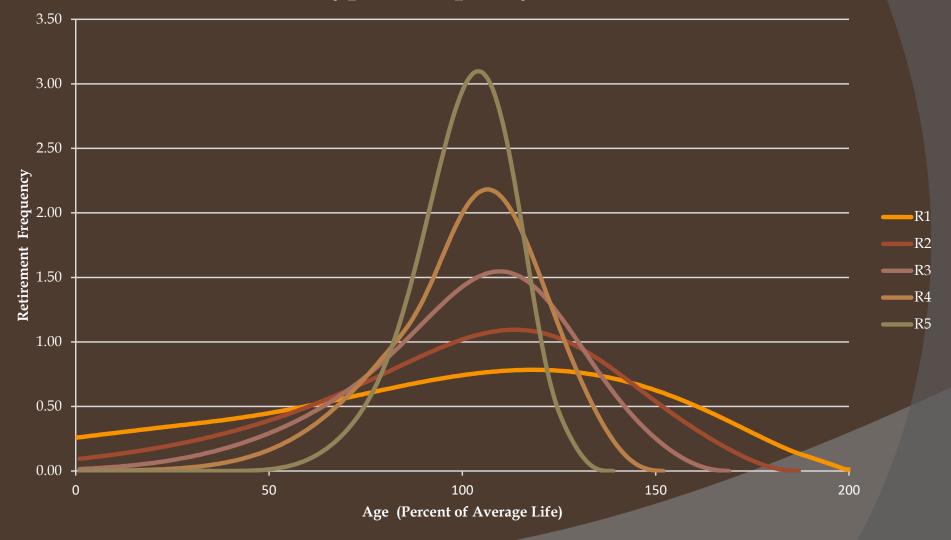

- Average Life
 - Age (x-axis) is expressed as a percentage of average life
 - This makes curves adaptable to property of different ages
 - Each curve can be modified to forecast property groups with various average lives

- Iowa Curves
 - Variation of Life
 - Shown by numbers (e.g., L1, L5)
 - Represent heights of modes
 - Higher number = higher mode = lower variation = smaller maximum life
 - All three variables used to describe a curve
 - E.g., Iowa 13-L1
 - The graphs below show each of the 18 original curves organized by modal family


Type L Survivor Curves


Type L Frequency Curves

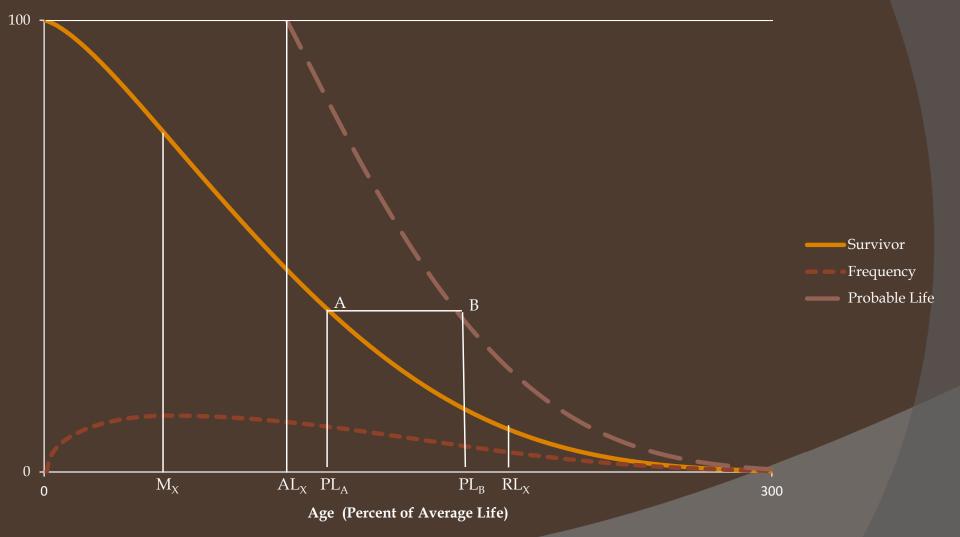

Type S Survivor Curves


Type S Frequency Curves

Type R Survivor Curves

Type R Frequency Curves

- Types of Lives
 - Average Life
 - Realized Life
 - Remaining Life
 - Probable Life


- Types of Lives
 - Average Life
 - The area under the survivor curve
 - Used in the denominator of the straight-line formula to calculate the annual accrual
 - Must have a complete survivor curve to calculate average life

- Types of Lives
 - Realized Life
 - The average years of service experienced to date from the vintage's original installation
 - Like average life but taken at a point in time
 - Average life = realized life + unrealized life

- Types of Lives
 - Remaining Life
 - Represents future years of service expected from the surviving property
 - Calculated by taking the area under the future portion of the survivor curve divided by the percent surviving at that age
 - Used in the denominator of the RL method annual accrual formula

- Types of Lives
 - Probable Life
 - The total life expectancy of the property surviving at any age
 - Probable life = remaining life + age
 - Each type of life may be calculated from the survivor curve
 - Each life is illustrated below

Iowa Curve Derivations

OUTLINE

* INTRODUCTION

- * ACCOUNTING AND COMPUTATIONS
- ***** DEPRECIATION SYSTEMS
- ✤ MORTALITY CONCEPTS
- ACTUARIAL ANALYSIS
- SIMULATED PLANT RECORD MODEL
- ✤ REMOVAL COST AND SALVAGE
- ✤ RATEMAKING ISSUES

ACTUARIAL ANALYSIS

- Introduction
- The Retirement Rate Method
- Banding
- Curve Fitting

ACTUARIAL ANALYSIS

Introduction

- Actuaries study human mortality to assess risk and set insurance premiums
- Study of human mortality is analogous to estimating service lives of industrial property groups
- Most human mortality is a function of age
- Review plant forces of retirement

ACTUARIAL ANALYSIS

Introduction

- Review Forces of Retirement ("Mortality")
 - Physical Factors
 - Wear, decay, and deterioration
 - Action of the elements and accidents
 - Functional Factors
 - Inadequacy
 - Obsolescence
 - Changes in the art and technology
 - Changes in demand
 - Regulatory requirements
 - Managerial Discretion
 - Contingent Factors
 - Casualties or disasters
 - Extraordinary obsolescence

Introduction

- Actuaries study historical data in order to forecast probable life
- Depreciation analysts do the same
- Continuing Property Records ("CPR")
 - Contains historical data of placements and retirements
 - This data is used in the retirement rate method

• The Retirement Rate Method

- The best method used to calculate observed survivor curves
- Observed survivor curves are rarely complete, so they must be fitted with Iowa curves
- Historical data is put in a matrix format to calculate an observed life table ("OLT")
- The exposure matrix, retirement matrix, and OLT are shown below

See Barreca SDP Presentation 2014

• The Exposure Matrix

				Experience	Years					
		Exposu	ires at Janu	ary 1 of Ead	h Year (Dol	llars in 000'	s)			
Placement	<u>2008</u>	<u>2009</u>	<u>2010</u>	<u>2011</u>	<u>2012</u>	<u>2013</u>	<u>2014</u>	<u>2015</u>	Total at Start	Age
Years									of Age Interval	Interval
2003	261	245	228	211	192	173	152	131	131	11.5 - 12.5
2004	267	252	236	220	202	184	165	145	297	10.5 - 11.5
2005	304	291	277	263	248	232	216	198	536	9.5 - 10.5
2006	345	334	322	310	298	284	270	255	847	8.5 - 9.5
2007	367	357	347	335	324	312	299	286	1,201	7.5 - 8.5
2008	375	366	357	347	336	325	314	302	1,581	6.5 - 7.5
2009		377	366	356	346	336	327	319	1,986	5.5 - 6.5
2010			381	369	358	347	336	327	2,404	4.5 - 5.5
2011				386	372	359	346	334	2,559	3.5 - 4.5
2012					395	380	366	352	2,722	2.5 - 3.5
2013						401	385	370	2,866	1.5 - 2.5
2014							410	393	2,998	0.5 - 1.5
2015								416	3,141	0.0 - 0.5
Total	1919	2222	2514	2796	3070	3333	3586	3827	23,268	
Total	1919	2222	2514	2796	3070	3333	3586	3827	23,268	
5/19/2022								416	3,141	0.0 - 0.5
5/ 19/ 2022							170		-1	010 710

• The Retirement Rate Method

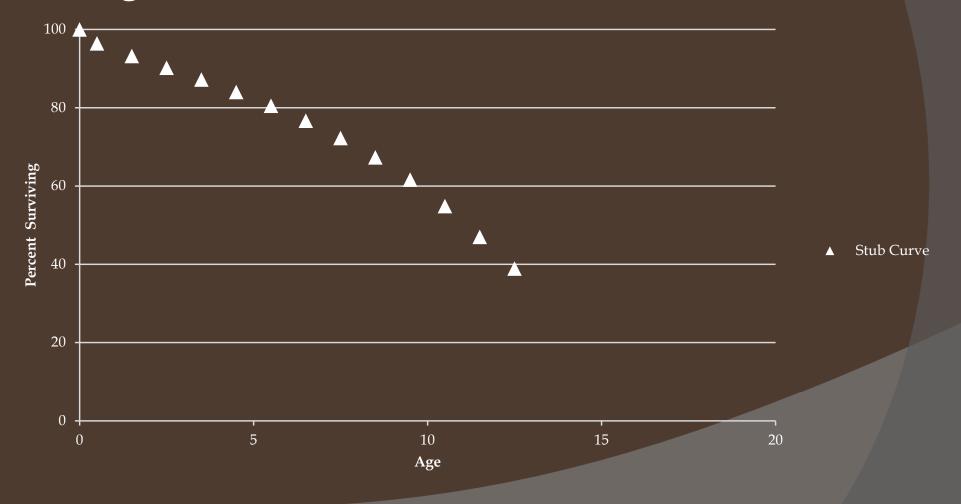
- The Exposure Matrix
 - Exposure is the depreciable property subject to retirement each year
 - Placement year ("vintage") the year property was put in service
 - Experience year refers to the accounting data for a particular calendar year
 - Half-year convention assumes all units are installed uniformly during the year, thus installed in mid-year on average
 - Total for each age interval calculated using the "stair-step" method

• The Retirement Matrix

				Experience	Years					
		Re	tirments D	uring the Ye	ear (Dollars	in 000's)				
Placement	<u>2008</u>	<u>2009</u>	<u>2010</u>	<u>2011</u>	<u>2012</u>	<u>2013</u>	<u>2014</u>	<u>2015</u>	Total During	Age
Years									Age Interval	Interval
2003	16	17	18	19	19	20	21	23	23	11.5 - 12.5
2004	15	16	17	17	18	19	20	21	43	10.5 - 11.5
2005	13	14	14	15	16	17	17	18	59	9.5 - 10.5
2006	11	12	12	13	13	14	15	15	71	8.5 - 9.5
2007	10	11	11	12	12	13	13	14	82	7.5 - 8.5
2008	9	9	10	10	11	11	12	13	91	6.5 - 7.5
2009		11	10	10	9	9	9	8	95	5.5 - 6.5
2010			12	11	11	10	10	9	100	4.5 - 5.5
2011				14	13	13	12	11	93	3.5 - 4.5
2012					15	14	14	13	91	2.5 - 3.5
2013						16	15	14	93	1.5 - 2.5
2014							17	16	100	0.5 - 1.5
2015								18	112	0.0 - 0.5
Total	74	89	104	121	139	157	175	194	1,052	
Total	74	89	104	121	139	157	175	194	1,052	
5/19/2022								18	112	0.0 - 0.5
5/ 19/ 2022								70	700	010 710

• The Retirement Rate Method

- The Retirement Matrix
 - The amounts retired <u>during</u> each year affect the amount of exposures at the <u>beginning</u> of the next year
 - Totals for each age interval calculated the same way as in the Exposure Matrix
 - There would be a separate matrix for sales, transfers, and adjusting entries, which would all affect the exposure amounts


• The Observed Life Table

					Percent
Age at	Exposures at	Retirements			Surviving at
Start of	Start of	During Age	Retirement	Survivor	Start of
Interval	Age Interval	Interval	Ratio	Ratio	Age Interval
A	B	С	D=C/B	E = 1 - D	F
0.0	3,141	112	0.036	0.964	100.00
0.5	2,998	100	0.033	0.967	96.43
1.5	2,866	93	0.032	0.968	93.21
2.5	2,722	91	0.033	0.967	90.19
3.5	2,559	93	0.037	0.963	87.19
4.5	2,404	100	0.042	0.958	84.01
5.5	1,986	95	0.048	0.952	80.50
6.5	1,581	91	0.058	0.942	76.67
7.5	1,201	82	0.068	0.932	72.26
8.5	847	71	0.084	0.916	67.31
9.5	536	59	0.110	0.890	61.63
10.5	297	43	0.143	0.857	54.87
11.5	131	23	0.172	0.828	47.01
					38.91
Total	23,268	1,052			
Total	23,268	1,052			
					38.91

• The Retirement Rate Method

- The Observed Life Table
 - The totaled amounts for each age interval from both matrices form the exposure and retirement columns in the OLT
 - Retirement ratio the probability that property surviving will be retired during the age interval
 - Survivor ratio complement to the retirement ratio
 - Percents surviving in Column F are used to form the observed "stub" curve

• Original "Stub" Survivor Curve

- Banding
 - Forces of retirement are constantly changing
 - Banding helps isolate and measure the magnitude of these changes
 - Three primary benefits:
 - Increase the sample size
 - Smooth observed data
 - Identify trends
 - Two primary banding methods:
 - Placement band
 - Experience band

• Placement Bands

				Experience	Years					
		Exposi	ires at Janu	ary 1 of Eac	ch Year (Do	llars in 000'	s)			
Placement	<u>2008</u>	<u>2009</u>	<u>2010</u>	<u>2011</u>	<u>2012</u>	<u>2013</u>	<u>2014</u>	<u>2015</u>	Total at Start	Age
Years									of Age Interval	Interval
2003	261	245	228	211	192	173	152	131		11.5 - 12.5
2004	267	252	236	220	202	184	165	145		10.5 - 11.5
2005	304	291	277	263	248	232	216	198	198	9.5 - 10.5
2006	345	334	322	310	298	284	270	255	471	8.5 - 9.5
2007	367	357	347	335	324	312	299	286	788	7.5 - 8.5
2008	375	366	357	347	336	325	314	302	1,133	6.5 - 7.5
2009		377	366	356	346	336	327	319	1,186	5.5 - 6.5
2010			381	369	358	347	336	327	1,237	4.5 - 5.5
2011				386	372	359	346	334	1,285	3.5 - 4.5
2012					395	380	366	352	1,331	2.5 - 3.5
2013						401	385	370	1,059	1.5 - 2.5
2014							410	393	733	0.5 - 1.5
2015								416	375	0.0 - 0.5
Total	1919	2222	2514	2796	3070	3333	3586	3827	9,796	
Total	1919	2222	2514	2796	3070	3333	3586	3827	9,796	
5 (10/2022								416	375	0.0 - 0.5
5/ 19/ 2022							170	000	122	010 710

- Banding
 - Placement Bands
 - Isolate selected placement ("vintage") years
 - Used for comparing properties with a group with different physical characteristics
 - E.g. in 2005 a utility started using a different chemical to treat transmission poles
 - Dilemma placement bands yield shorter stub curbs for newer vintages, but newer vintages are better for forecasting

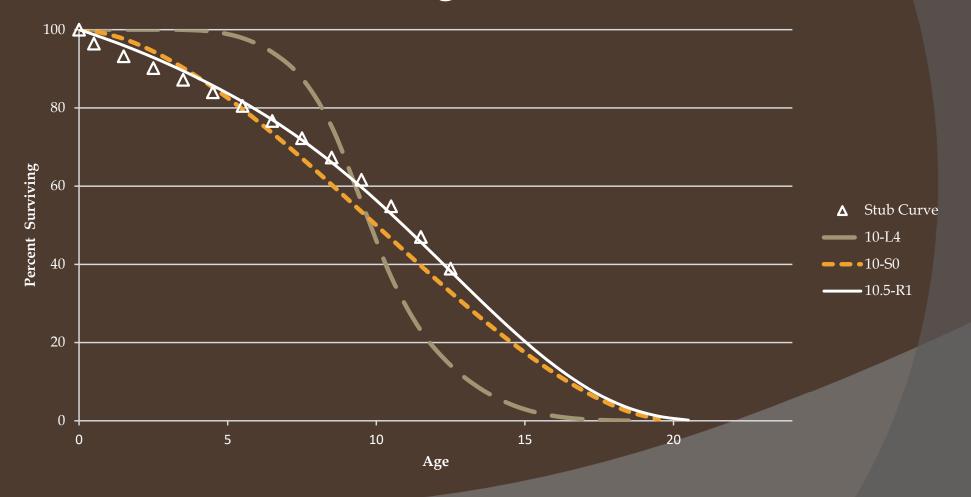
• Experience Bands

				Experience	Years					
		Exposu	ires at Janu	ary 1 of Eac	:h Year (Do	llars in 000	's)			
Placement	<u>2008</u>	<u>2009</u>	<u>2010</u>	<u>2011</u>	<u>2012</u>	<u>2013</u>	<u>2014</u>	<u>2015</u>	Total at Start	Age
Years									of Age Interval	Interval
2003	261	245	228	211	192	173	152	131		11.5 - 12.5
2004	267	252	236	220	202	184	165	145		10.5 - 11.5
2005	304	291	277	263	248	232	216	198	173	9.5 - 10.5
2006	345	334	322	310	298	284	270	255	376	8.5 - 9.5
2007	367	357	347	335	324	312	299	286	645	7.5 - 8.5
2008	375	366	357	347	336	325	314	302	752	6.5 - 7.5
2009		377	366	356	346	336	327	319	872	5.5 - 6.5
2010			381	369	358	347	336	327	959	4.5 - 5.5
2011				386	372	359	346	334	1,008	3.5 - 4.5
2012					395	380	366	352	1,039	2.5 - 3.5
2013						401	385	370	1,072	1.5 - 2.5
2014							410	393	1,121	0.5 - 1.5
2015								416	1,182	0.0 - 0.5
Total	1919	2222	2514	2796	3070	3333	3586	3827	9,199	
Total	1919	2222	2514	2796	3070	3333	3586	3827	9,199	
5/19/2022								416	1,182	0.0 - 0.5

Banding

- Experience Bands
 - Isolates selected experience years
 - May be used to analyze the effects of an unusual environment event
 - E.g. severe ice storm in 2013
 - Pro Tend to yield the most complete stub curves for recent bands because they have the greatest numbers of vintages included
 - Con result in more erratic dispersion patterns making curve fitting more difficult

Banding


- Conclusion
 - Analysts use combinations of placement and experience bands
 - Analysts must ultimately use professional judgment in determining the type of band and band width
 - Regardless of band choice, observed survivor curves rarely reach zero percent
 - Curve fitting using standardized curves is necessary to complete the curve

• Curve Fitting

- Generalized survivor curves (mainly Iowa curves) are used to fit observed stub curves
- Necessary to get smooth, complete survivor curves in order to calculate average life
- May be done visually or mathematically

MORTALITY CONCEPTS

• Visual Curve Fitting

• Curve Fitting

- Visual Curve Fitting
 - Analyst makes a judgment about the best fitting Iowa curve by examining plotted data
 - In the example above, visual fitting is sufficient to see that the 10.5-R1 is the best fit
 - Is more subjective than mathematical fitting

• Curve Fitting

- Mathematical Curve Fitting
 - Uses sum of least squares method to calculate the best fitting curve
 - Less subjective than visual fitting
 - Blind reliance may lead to poor estimates
 - Analysts should use mathematical fitting but check the results visually and employ judgment to make sure the estimate is sound

• Mathematical Curve Fitting

Age	Stub	lo	wa Curve	S	Squa	red Differ	ences
Interval	Curve	10-L4	10-S0	10.5-R1	10-L4	10-S0	10.5-R1
0.0	100.0	100.0	100.0	100.0	0.0	0.0	0.0
0.5	96.4	100.0	99.7	98.7	12.7	10.3	5.3
1.5	93.2	100.0	97.7	96.0	46.1	19.8	7.6
2,5	90.2	100.0	94.4	92,9	96.2	18.0	7,2
3.5	87.2	100.0	90.2	89.5	162.9	9.3	5.2
4.5	84.0	99.5	85.3	85.7	239.9	1.6	2.9
5.5	80.5	97.9	79.7	81.6	301.1	0.7	1 .2
6.5	76.7	94.2	73.6	77.0	308.5	9.5	0.1
7.5	72.3	87.6	67.1	71.8	235.2	26.5	0.2
8.5	67.3	75.2	60.4	66.1	62.7	48.2	1.6
9.5	61.6	56.0	53.5	5 9 .7	31.4	66.6	3.6
10.5	54. 9	36.8	46.5	52. 9	325.4	69.6	3.9
11.5	47.0	23,1	39.6	45.7	572.6	54.4	1.8
12.5	38.9	14.2	32. 9	38.2	609.6	36.2	0.4
SUM	-				3004.2	371.0	41.0

41.0

371.0

3004.2

OUTLINE

* INTRODUCTION

- * ACCOUNTING AND COMPUTATIONS
- ***** DEPRECIATION SYSTEMS
- ✤ MORTALITY CONCEPTS
- ACTUARIAL ANALYSIS
- **SIMULATED PLANT RECORD MODEL**
- ✤ Removal Cost and Salvage
- ✤ RATEMAKING ISSUES

Introduction

- Actuarial analysis requires aged data
- What if you don't have aged data?
- Simulated Plant Record ("SPR") model is used to simulate the retirement pattern for each vintage
- 1922 Cyrus Hill developed the principles used in the SPR model today
- 1947 Alex Bauhan expanded SPR and developed several criterion to measure the results of the analysis

The following example is from Jensen SDP Presentation 2014

Aged Data

			End	d of Year	Balances	s (\$)				
Vintage	Installations	1997	1999	2001	2003	2005	2007	2009	2011	2013
1997	220	220	220	220	213	194	152	95	19	0
			250	250	248	235	198	143	31	4
1999	270		270	270	270	262	238	186	57	9
				285	285	282	268	225	91	26
2001	300			300	300	300	291	264	145	42
					320	320	317	301	241	103
2003	350				350	350	350	340	284	157
						375	375	371	325	219
2005	390					390	390	390	362	286
							405	405	392	344
2007	450						450	450	441	416
								480	480	478
2009	500							500	500	500
									580	580
2011	670								670	670
										790
2013	750									750
Ba	lance	220	740	1325	1986	2708	3434	4150	4618	5374
Ba	lance	220	740	1325	1986	2708	3434	4150	4618	5374
5/19/2022	750									750

• Unaged Data

			End	d of Year	Balances	s (\$)				
Vintage	Installations	1 9 97	19 9 9	2001	2003	2005	2007	2009	2011	2013
1997	220									
1999	270									
2001	300									
2003	350									
2005	390									
2007	450									
2009	500									
2011	670									
2013	750									
Ba	lance	220	740	1325	1986	2708	3434	4150	4618	5374
Ba	lance	220	740	1325	1986	2708	3434	4150	4618	5374
5/19/2022	750									

• SPR Using 10-S3: 2009 Test Year

Age	Vintage		10-53	Sim. Bal.
Interval	Year	Installations	% Surviving	2009
12.5	1997	220	16	35
11.5	1998	250	28	69
10.5	1999	270	42	114
9.5	2000	285	58	165
8.5	2001	300	72	217
7.5	2002	320	84	269
6.5	2003	350	92	323
5.5	2004	375	97	363
4.5	2005	390	99	386
3.5	2006	405	100	404
2.5	2007	450	100	450
1.5	2008	480	100	480
0.5	2009	500	100	500
	Total Sin	nulated Balance		3,775
	Tota	Actual Balance		4,150
		Difference		(375)
		Difference		(375)
	Tota	Actual Balance		4,150
	10000	INIGER DAIDURE		21112

• SPR Using 12-S3: 2009 Test Year

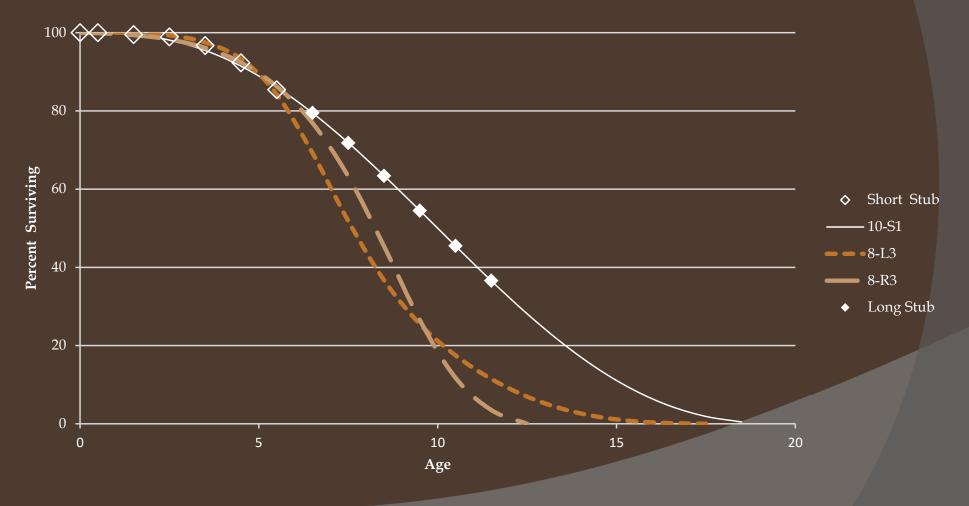
Age	Vintage		12-53	Sim. Bal.
Interval	Year	Installations	% Surviving	2009
12.5	1997	220	43	95
11.5	1998	250	57	143
10.5	1999	270	69	186
9.5	2000	285	79	225
8.5	2001	300	88	264
7.5	2002	320	94	301
6.5	2003	350	97	340
5.5	2004	375	99	371
4.5	2005	390	100	390
3.5	2006	405	100	405
2.5	2007	450	100	450
1.5	2008	480	100	480
0.5	2009	500	100	500
	Total Sin	nulated Balance		4,150
	Tota	Actual Balance		4,150
		Difference		0
		Difference		0
	Total	Actual Balance		4,150
		Idiarca palalice		+1720

• Recap of 2009 Test Year

- We first chose Iowa curve 10-S3 to start
- The simulated balance was less than the actual balance
- So we chose a longer curve (12-S3) and it resulted in a perfect fit
- SPR, however, should never be tested on one year (there is always a perfect fit for any one year)

		SPR Using	lowa Curve	12-53: 20	09, 2011, 2013	;		
Vintage	Insts.	% Surv.	2009	% Surv.	2011	% Surv.		2013
1997	220	43	95	21	46	6		13
1998	250	57	143	31	78	12		30
1999	270	69	186	43	116	21		57
2000	285	79	225	57	162	31		88
2001	300	88	264	69	207	43		129
2002	320	94	301	79	253	57		182
2003	350	97	340	88	308	69		242
2004	375	99	371	94	353	79		296
2005	390	100	390	97	378	88		343
2006	405	100	405	99	401	94		381
2007	450	100	450	100	450	97		437
2008	480	100	480	100	480	99		475
2009	500	100	500	100	500	100		500
2010	580			100	580	100		580
2011	670			100	670	100		670
2012	790					100		790
2013	750	_				100		750
Simulate	ed Balances	Ę	\$ 4,150		\$ 4,982		\$	5,963
Actu	al Balances		4,150		4,618			5,374
	Difference		0		364			589
Differen	ce Squared		0		132,496		3	346,921
SSD =	479,417		MSD =	159,806		VMSD =	400)
CI =		<u>ictual Bal</u> =	<u>4.714</u> =	12	IV =	<u>1000</u> =	85	
	VMS	5D	400			CI		
	1M2		400			CI		
5/19/2022	Average A	Actual Bal =	4,714 =	12	IV =	1000 =	85	100

		SPR Using	g Iowa Curve	10-S3: 20	09, 2011, 2013	3		
Vintage	Insts.	% Surv.	2009	% Surv.	2011	% Surv.	2	2013
1997	220	16	35	3	7	0		0
1998	250	28	70	8	20	1		3
1999	270	42	113	16	43	3		8
2000	285	58	165	28	80	8		23
2001	300	72	216	42	126	16		48
2002	320	84	269	58	186	28		90
2003	350	92	322	72	252	42		147
2004	375	97	364	84	315	58		218
2005	390	99	386	92	359	72		281
2006	405	100	405	97	393	84		340
2007	450	100	450	99	446	92		414
2008	480	100	480	100	480	97		466
2009	500	100	500	100	500	99		495
2010	580			100	580	100		580
2011	670			100	670	100		670
2012	790					100		790
2013	750					100		750
Simulate	ed Balances		\$ 3,775	-	\$ 4,457		\$	5,323
Actu	al Balances		4,150		4,618			5,374
	Difference		(375)		(161)			(51)
Differen	ce Squared		140,625		25,921			2,601
SSD =	169,147		MSD =	56,382		VMSD =	237	
	•···				n <i>4</i> –	1000 -		
CI =		<u>ictual Bal</u> =	<u>4.714</u> =	20	IV =	<u>1000</u> =	50	
	VMS		237			CI		
	VMS		237			CI		
5/19/2022	Average A	ctual Bal =	4,714 =	20	IV =	1000 =	50	101


• Conformance Index Scale

CI	Value
> 75	Excellent
50 – 75	Good
25 – 50	Fair
< 25	Poor

• Retirement Experience Index

- Measures the maturity of the account
- Calculated by dividing the balance from the oldest vintage by the installation cost
- Higher retirement experience provides for more accurate curve fitting
- If stub curves are too short, there may appear to be many Iowa curves that could provide a good fit

• REI Demonstration

• REI Scale

REI	Value
> 75%	Excellent
50% - 75%	Good
33% - 50%	Fair
17% - 33%	Poor
0% – 17%	Valueless

OUTLINE

* INTRODUCTION

- * ACCOUNTING AND COMPUTATIONS
- ***** DEPRECIATION SYSTEMS
- ✤ MORTALITY CONCEPTS
- ACTUARIAL ANALYSIS
- SIMULATED PLANT RECORD MODEL
- ***** REMOVAL COST AND SALVAGE
- ***** RATEMAKING ISSUES

Introduction

- Gross Salvage the dollar amount received for property retired if sold
- Cost of removal the cost of demolishing, dismantling, or otherwise removing plant
- Net Salvage
 - Gross Salvage less removal cost
 - Review basic straight-line formula
 - Annual Accrual = <u>Original Cost Net Salvage</u>

Average Service Life

Introduction

- Net Salvage
 - Review NS% formula

Net Salvage % = <u>(Gross Salvage \$ – Removal Cost \$)</u> Retirement \$

- Avg. Life Rate = <u>(100% Avg. NS%)</u> Avg. Service Life
- Avg. RL Rate = <u>(100% Future NS%)</u> Avg. Remaining Life

Introduction

- Net Salvage
 - Allocation Concept
 - Property ownership includes the responsibility of the asset's ultimate removal
 - If current uses benefit from an asset's use, they should pay their pro rata share of the costs of removal

Net Salvage

- Lifespan / Production Plant
 - Terminal Net Salvage
 - Demolition Studies
 - Contingency costs
 - Escalation rates
 - Interim Net Salvage
- Mass Property
 - Historical salvage rate analysis used to identify trends and project future net salvage
 - Gradualism

OUTLINE

* INTRODUCTION

- * ACCOUNTING AND COMPUTATIONS
- ***** DEPRECIATION SYSTEMS
- ✤ MORTALITY CONCEPTS
- ACTUARIAL ANALYSIS
- SIMULATED PLANT RECORD MODEL
- ✤ Removal Cost and Salvage
- ***** RATEMAKING ISSUES

RATEMAKING ISSUES

• Intergenerational Equity

- Climate Policies
- Replacement programs
- ALG vs ELG
- O Practical Impacts
 - Rate shock mitigation
 - Cash flow
 - Settlement leverage

WORKS CITED

- Barreca, Steve, and Rick Fisher. Actuarial Life Analysis. New Orleans, LA. September 2014. Boston: Society of Depreciation Professionals, 2014. (Cited herein as "Barreca SDP Presentation 2014").
- Introduction to Depreciation for Public Utilities and Other Industries. Washington DC: Edison Electric Institute and American Gas Association, 2013. (Cited herein as "Introduction to Depreciation, EEI/AGA").
- Jensen, Susan. *Simulation Life Analysis*. New Orleans, LA. September 2014. Boston: Society of Depreciation Professionals, 2014. (Cited herein as "Jensen SDP Presentation 2014").
- Public Utility Depreciation Practices. Washington DC: National Association of Regulatory Utility Commissioners, 1995. (Cited herein as "NARUC Manual").
- Winfrey, Robley. Statistical Analysis of Industrial Property Retirements, Originally printed as "Bulletin 125." Ames: Engineering Research Institute, Iowa State University, 1935: revised 1967. (Cited herein as "Bulletin 125").
- Wolf, Frank K., and W. Chester Fitch. *Depreciation Systems*. Ames: Iowa State University Press, 1994. (Cited herein as "Depreciation Systems").

QUESTIONS AND DISCUSSION

DAVID J. GARRETT

5/19/2022

MAY 19, 2022