Reliability of the Gas/Electric Interface in MISO

NASUCA
June 2018
The generation fleet in the MISO region has been evolving; MISO efforts continue to anticipate and plan for the future.

MISO Generation Portfolio Evolution

2005
- Coal: 76%
- Gas: 13%
- Hydro: 2%
- Nuclear: 2%

2017
- Coal: 48%
- Gas: 16%
- Hydro: 24%
- Nuclear: 8%

2032 Future Scenarios

- **Limited Fleet Change**: Stalled generation fleet changes. Limited renewables additions driven solely by existing RPS under limited demand growth.
- **Continued Fleet Change**: Continuation of the renewable addition and coal retirement trends of the past decade.
- **Accelerated Fleet Change**: Renewables and demand side technologies added at a rate above historical trends. Fleet changes result in a 20% CO₂ emission reduction.
- **Distributed & Emerging Tech**: New renewable additions largely distributed and storage resources co-located with largest sites.

1. Emission reductions from current levels by year 2031.
Though MISO is favorably situated in the gas grid, there are challenges with increased reliance on gas.

MISO Favorable Location on Gas Grid

- Fast Start
- Various fuel risks and mitigation across the region
- Potential common mode of failure
- Gas infrastructure project challenges
- Major industry differences between gas and electricity

Fuel Assurance Issues
- Interruptible Transportation (IT)
- MISO Gas Generator Fuel Survey Results
- Firm Transportation (FT)
- Shared FT and IT
- Dual-Fuel, Shared FT and IT
- Dual-Fuel, IT

Increasing Reliance on Gas

- MISO North / Central
- MISO Total (including MISO South)

<table>
<thead>
<tr>
<th>Year</th>
<th>MISO Total</th>
<th>MISO North / Central</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>6%</td>
<td>21%</td>
</tr>
<tr>
<td>2012</td>
<td>11%</td>
<td>21%</td>
</tr>
<tr>
<td>2013</td>
<td>8%</td>
<td>21%</td>
</tr>
<tr>
<td>2014</td>
<td>7%</td>
<td>21%</td>
</tr>
<tr>
<td>2015</td>
<td>12%</td>
<td>21%</td>
</tr>
<tr>
<td>2016</td>
<td>16%</td>
<td>21%</td>
</tr>
<tr>
<td>2017</td>
<td>27%</td>
<td>21%</td>
</tr>
<tr>
<td>2018</td>
<td>24%</td>
<td>21%</td>
</tr>
<tr>
<td>2019</td>
<td>21%</td>
<td>21%</td>
</tr>
<tr>
<td>2020</td>
<td>21%</td>
<td>21%</td>
</tr>
<tr>
<td>2021</td>
<td>21%</td>
<td>21%</td>
</tr>
<tr>
<td>2022</td>
<td>21%</td>
<td>21%</td>
</tr>
</tbody>
</table>

Gas-Electric Challenges

- Just-in-time delivery
- Various fuel risks and mitigation across the region
- Potential common mode of failure
- Gas infrastructure project challenges
- Major industry differences between gas and electricity
MISO continues to make steady progress on gas contingencies to assess potential reliability risk

- Incorporated in planning studies since 2015, involvement in industry studies and dialogue
- Using the gas generator survey, MISO can help scope vulnerability
- Exposure to gas contingencies is greatly dependent on gas topology and mitigation levers
- Access to accurate data in a useful format helps support system reliability and resilience

Top-5 Gas Pipelines

<table>
<thead>
<tr>
<th>Pipeline</th>
<th>Connected MWs</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANR</td>
<td>Dual Fuel, Indirectly Connected to Pipeline via LDC (MW), Dual Fuel, Directly Connected to Pipeline (MW), Connected to Multiple Pipelines (MW)</td>
</tr>
<tr>
<td>Texas Eastern</td>
<td>Directly Connected to Pipeline and also Connected to a LDC (MW), Indirectly Connected to Pipeline via LDC (MW)</td>
</tr>
<tr>
<td>NNG</td>
<td>Only Connected to this Pipeline (MW)</td>
</tr>
<tr>
<td>Gulf South</td>
<td></td>
</tr>
<tr>
<td>Columbia Gulf</td>
<td></td>
</tr>
</tbody>
</table>
MISO has incorporated natural gas disruptions in various planning studies since 2015

- Assess system impact of extreme events for TPL-001-4 standard compliance
- Evaluate potential LOLE impact under largest gas pipeline contingencies
- Assess the system reliability performance for anticipated operating horizon

NERC TPL-001-4 Extreme Event Analysis

Resource Adequacy Impact Analysis

Coordinated Seasonal Assessment
Current planning studies have found no major reliability risk driven by gas pipeline contingencies evaluated

Study

- MISO currently uses 31 gas contingencies, as extreme events, to evaluate transmission needs and risk
- Contingencies list is reviewed and updated annually based on geographic clustering, external studies, historic events, and transmission owner/planner feedback

Results

- No cascading resulted from gas pipeline events in MTEP15,16,17 TPL analyses
- No impact found in 2017/18 Winter CSA assessment
- No meaningful reliability limitations found in LOLE analysis of one extreme event (full pipeline outage in current resource portfolio), as annotated in FERC resilience responses*

*“Only in one scenario, under the extreme and long-term event of the loss of the largest natural gas pipeline for the entire summer peak season, was a slightly elevated regional loss of load risk observed.” MISO response in AD18-07 Page 27, Filed 03/09/2018
MISO’s ongoing activities include study initiatives to assess additional gas disruptions

Collaboration with Industry and Stakeholders

- Create detailed catalogue of historical events and refine gas system contingency list
- Estimate probability and impact and identify possible mitigations
- Update information on gas topology and system parameters

To help address:

- How to ensure data accuracy and transparency in a useful format?
- At what point does increased dependence on gas create a severe contingency risk?
- How could such risks be integrated into operations and planning to improve reliability?
Questions?

Jordan Bakke
Manager, Policy Studies

JBakke@misoenergy.org

Want to know more about MISO Gas-Electric Planning?